/- Copyright (c) 2015 Haitao Zhang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author : Haitao Zhang -/ import data algebra.group algebra.group_power .finsubg .hom .perm open function finset open eq.ops namespace group_theory section cyclic open nat fin list local attribute madd [reducible] variable {A : Type} variable [ambG : group A] include ambG lemma pow_mod {a : A} {n m : nat} : a ^ m = 1 → a ^ n = a ^ (n % m) := assume Pid, assert a ^ (n / m * m) = 1, from calc a ^ (n / m * m) = a ^ (m * (n / m)) : by rewrite (mul.comm (n / m) m) ... = (a ^ m) ^ (n / m) : by rewrite pow_mul ... = 1 ^ (n / m) : by rewrite Pid ... = 1 : one_pow (n / m), calc a ^ n = a ^ (n / m * m + n % m) : by rewrite -(eq_div_mul_add_mod n m) ... = a ^ (n / m * m) * a ^ (n % m) : by rewrite pow_add ... = 1 * a ^ (n % m) : by rewrite this ... = a ^ (n % m) : by rewrite one_mul lemma pow_sub_eq_one_of_pow_eq {a : A} {i j : nat} : a^i = a^j → a^(i - j) = 1 := assume Pe, or.elim (lt_or_ge i j) (assume Piltj, begin rewrite [sub_eq_zero_of_le (nat.le_of_lt Piltj)] end) (assume Pigej, begin rewrite [pow_sub a Pigej, Pe, mul.right_inv] end) lemma pow_dist_eq_one_of_pow_eq {a : A} {i j : nat} : a^i = a^j → a^(dist i j) = 1 := assume Pe, or.elim (lt_or_ge i j) (suppose i < j, by rewrite [dist_eq_sub_of_lt this]; exact pow_sub_eq_one_of_pow_eq (eq.symm Pe)) (suppose i ≥ j, by rewrite [dist_eq_sub_of_ge this]; exact pow_sub_eq_one_of_pow_eq Pe) lemma pow_madd {a : A} {n : nat} {i j : fin (succ n)} : a^(succ n) = 1 → a^(val (i + j)) = a^i * a^j := assume Pe, calc a^(val (i + j)) = a^((i + j) % (succ n)) : rfl ... = a^(val i + val j) : by rewrite [-pow_mod Pe] ... = a^i * a^j : by rewrite pow_add lemma mk_pow_mod {a : A} {n m : nat} : a ^ (succ m) = 1 → a ^ n = a ^ (mk_mod m n) := assume Pe, pow_mod Pe variable [finA : fintype A] include finA open fintype variable [deceqA : decidable_eq A] include deceqA lemma exists_pow_eq_one (a : A) : ∃ n, n < card A ∧ a ^ (succ n) = 1 := let f := (λ i : fin (succ (card A)), a ^ i) in assert Pninj : ¬(injective f), from assume Pinj, absurd (card_le_of_inj _ _ (exists.intro f Pinj)) (begin rewrite [card_fin], apply not_succ_le_self end), obtain i₁ P₁, from exists_not_of_not_forall Pninj, obtain i₂ P₂, from exists_not_of_not_forall P₁, obtain Pfe Pne, from and_not_of_not_implies P₂, assert Pvne : val i₁ ≠ val i₂, from assume Pveq, absurd (eq_of_veq Pveq) Pne, exists.intro (pred (dist i₁ i₂)) (begin rewrite [succ_pred_of_pos (dist_pos_of_ne Pvne)], apply and.intro, apply lt_of_succ_lt_succ, rewrite [succ_pred_of_pos (dist_pos_of_ne Pvne)], apply nat.lt_of_le_of_lt dist_le_max (max_lt i₁ i₂), apply pow_dist_eq_one_of_pow_eq Pfe end) -- Another possibility is to generate a list of powers and use find to get the first -- unity. -- The bound on bex is arbitrary as long as it is large enough (at least card A). Making -- it larger simplifies some proofs, such as a ∈ cyc a. definition cyc (a : A) : finset A := {x ∈ univ | bex (succ (card A)) (λ n, a ^ n = x)} definition order (a : A) := card (cyc a) definition pow_fin (a : A) (n : nat) (i : fin (order a)) := a ^ (i + n) definition cyc_pow_fin (a : A) (n : nat) : finset A := image (pow_fin a n) univ lemma order_le_group_order {a : A} : order a ≤ card A := card_le_card_of_subset !subset_univ lemma cyc_has_one (a : A) : 1 ∈ cyc a := begin apply mem_sep_of_mem !mem_univ, existsi 0, apply and.intro, apply zero_lt_succ, apply pow_zero end lemma order_pos (a : A) : 0 < order a := length_pos_of_mem (cyc_has_one a) lemma cyc_mul_closed (a : A) : finset_mul_closed_on (cyc a) := take g h, assume Pgin Phin, obtain n Plt Pe, from exists_pow_eq_one a, obtain i Pilt Pig, from of_mem_sep Pgin, obtain j Pjlt Pjh, from of_mem_sep Phin, begin rewrite [-Pig, -Pjh, -pow_add, pow_mod Pe], apply mem_sep_of_mem !mem_univ, existsi ((i + j) % (succ n)), apply and.intro, apply nat.lt_trans (mod_lt (i+j) !zero_lt_succ) (succ_lt_succ Plt), apply rfl end lemma cyc_has_inv (a : A) : finset_has_inv (cyc a) := take g, assume Pgin, obtain n Plt Pe, from exists_pow_eq_one a, obtain i Pilt Pig, from of_mem_sep Pgin, let ni := -(mk_mod n i) in assert Pinv : g*a^ni = 1, by rewrite [-Pig, mk_pow_mod Pe, -(pow_madd Pe), add.right_inv], begin rewrite [inv_eq_of_mul_eq_one Pinv], apply mem_sep_of_mem !mem_univ, existsi ni, apply and.intro, apply nat.lt_trans (is_lt ni) (succ_lt_succ Plt), apply rfl end lemma self_mem_cyc (a : A) : a ∈ cyc a := mem_sep_of_mem !mem_univ (exists.intro (1 : nat) (and.intro (succ_lt_succ card_pos) !pow_one)) lemma mem_cyc (a : A) : ∀ {n : nat}, a^n ∈ cyc a | 0 := cyc_has_one a | (succ n) := begin rewrite pow_succ', apply cyc_mul_closed a, exact mem_cyc, apply self_mem_cyc end lemma order_le {a : A} {n : nat} : a^(succ n) = 1 → order a ≤ succ n := assume Pe, let s := image (pow_nat a) (upto (succ n)) in assert Psub: cyc a ⊆ s, from subset_of_forall (take g, assume Pgin, obtain i Pilt Pig, from of_mem_sep Pgin, begin rewrite [-Pig, pow_mod Pe], apply mem_image, apply mem_upto_of_lt (mod_lt i !zero_lt_succ), exact rfl end), #nat calc order a ≤ card s : card_le_card_of_subset Psub ... ≤ card (upto (succ n)) : !card_image_le ... = succ n : card_upto (succ n) lemma pow_ne_of_lt_order {a : A} {n : nat} : succ n < order a → a^(succ n) ≠ 1 := assume Plt, not_imp_not_of_imp order_le (not_le_of_gt Plt) lemma eq_zero_of_pow_eq_one {a : A} : ∀ {n : nat}, a^n = 1 → n < order a → n = 0 | 0 := assume Pe Plt, rfl | (succ n) := assume Pe Plt, absurd Pe (pow_ne_of_lt_order Plt) lemma pow_fin_inj (a : A) (n : nat) : injective (pow_fin a n) := take i j : fin (order a), suppose a^(i + n) = a^(j + n), have a^(dist i j) = 1, begin apply !dist_add_add_right ▸ (pow_dist_eq_one_of_pow_eq this) end, have dist i j = 0, from eq_zero_of_pow_eq_one this (nat.lt_of_le_of_lt dist_le_max (max_lt i j)), eq_of_veq (eq_of_dist_eq_zero this) lemma cyc_eq_cyc (a : A) (n : nat) : cyc_pow_fin a n = cyc a := assert Psub : cyc_pow_fin a n ⊆ cyc a, from subset_of_forall (take g, assume Pgin, obtain i Pin Pig, from exists_of_mem_image Pgin, by rewrite [-Pig]; apply mem_cyc), eq_of_card_eq_of_subset (begin apply eq.trans, apply card_image_eq_of_inj_on, rewrite [to_set_univ, -set.injective_iff_inj_on_univ], exact pow_fin_inj a n, rewrite [card_fin] end) Psub lemma pow_order (a : A) : a^(order a) = 1 := obtain i Pin Pone, from exists_of_mem_image (eq.symm (cyc_eq_cyc a 1) ▸ cyc_has_one a), or.elim (eq_or_lt_of_le (succ_le_of_lt (is_lt i))) (assume P, P ▸ Pone) (assume P, absurd Pone (pow_ne_of_lt_order P)) lemma eq_one_of_order_eq_one {a : A} : order a = 1 → a = 1 := assume Porder, calc a = a^1 : by rewrite (pow_one a) ... = a^(order a) : by rewrite Porder ... = 1 : by rewrite pow_order lemma order_of_min_pow {a : A} {n : nat} (Pone : a^(succ n) = 1) (Pmin : ∀ i, i < n → a^(succ i) ≠ 1) : order a = succ n := or.elim (eq_or_lt_of_le (order_le Pone)) (λ P, P) (λ P : order a < succ n, begin assert Pn : a^(order a) ≠ 1, rewrite [-(succ_pred_of_pos (order_pos a))], apply Pmin, apply nat.lt_of_succ_lt_succ, rewrite [succ_pred_of_pos !order_pos], assumption, exact absurd (pow_order a) Pn end) lemma order_dvd_of_pow_eq_one {a : A} {n : nat} (Pone : a^n = 1) : order a ∣ n := assert Pe : a^(n % order a) = 1, from begin revert Pone, rewrite [eq_div_mul_add_mod n (order a) at {1}, pow_add, mul.comm _ (order a), pow_mul, pow_order, one_pow, one_mul], intros, assumption end, dvd_of_mod_eq_zero (eq_zero_of_pow_eq_one Pe (mod_lt n !order_pos)) definition cyc_is_finsubg [instance] (a : A) : is_finsubg (cyc a) := is_finsubg.mk (cyc_has_one a) (cyc_mul_closed a) (cyc_has_inv a) lemma order_dvd_group_order (a : A) : order a ∣ card A := dvd.intro (eq.symm (!mul.comm ▸ lagrange_theorem (subset_univ (cyc a)))) definition pow_fin' (a : A) (i : fin (succ (pred (order a)))) := pow_nat a i local attribute group_of_add_group [instance] lemma pow_fin_hom (a : A) : homomorphic (pow_fin' a) := take i j : fin (succ (pred (order a))), begin rewrite [↑pow_fin'], apply pow_madd, rewrite [succ_pred_of_pos !order_pos], exact pow_order a end definition pow_fin_is_iso (a : A) : is_iso_class (pow_fin' a) := is_iso_class.mk (pow_fin_hom a) (have H : injective (λ (i : fin (order a)), a ^ (val i + 0)), from pow_fin_inj a 0, begin+ rewrite [↑pow_fin', succ_pred_of_pos !order_pos]; exact H end) end cyclic section rot open nat list open fin fintype list section local attribute group_of_add_group [instance] lemma pow_eq_mul {n : nat} {i : fin (succ n)} : ∀ {k : nat}, i^k = mk_mod n (i*k) | 0 := by rewrite [pow_zero] | (succ k) := begin assert Psucc : i^(succ k) = madd (i^k) i, apply pow_succ', rewrite [Psucc, pow_eq_mul], apply eq_of_veq, rewrite [mul_succ, val_madd, ↑mk_mod, mod_add_mod] end end definition rotl : ∀ {n : nat} m : nat, fin n → fin n | 0 := take m i, elim0 i | (succ n) := take m, madd (mk_mod n (n*m)) definition rotr : ∀ {n : nat} m : nat, fin n → fin n | (0:nat) := take m i, elim0 i | (nat.succ n) := take m, madd (-(mk_mod n (n*m))) lemma rotl_succ' {n m : nat} : rotl m = madd (mk_mod n (n*m)) := rfl lemma rotl_zero : ∀ {n : nat}, @rotl n 0 = id | 0 := funext take i, elim0 i | (nat.succ n) := funext take i, begin rewrite [↑rotl, mul_zero, mk_mod_zero_eq, zero_madd] end lemma rotl_id : ∀ {n : nat}, @rotl n n = id | 0 := funext take i, elim0 i | (nat.succ n) := assert P : mk_mod n (n * succ n) = mk_mod n 0, from eq_of_veq (by rewrite [↑mk_mod, mul_mod_left]), begin rewrite [rotl_succ', P], apply rotl_zero end lemma rotl_to_zero {n i : nat} : rotl i (mk_mod n i) = 0 := eq_of_veq begin rewrite [↑rotl, val_madd], esimp [mk_mod], rewrite [ mod_add_mod, add_mod_mod, -succ_mul, mul_mod_right] end lemma rotl_compose : ∀ {n : nat} {j k : nat}, (@rotl n j) ∘ (rotl k) = rotl (j + k) | 0 := take j k, funext take i, elim0 i | (succ n) := take j k, funext take i, eq.symm begin rewrite [*rotl_succ', left_distrib, -(@madd_mk_mod n (n*j)), madd_assoc], end lemma rotr_rotl : ∀ {n : nat} (m : nat) {i : fin n}, rotr m (rotl m i) = i | 0 := take m i, elim0 i | (nat.succ n) := take m i, calc (-(mk_mod n (n*m))) + ((mk_mod n (n*m)) + i) = i : by rewrite neg_add_cancel_left lemma rotl_rotr : ∀ {n : nat} (m : nat), (@rotl n m) ∘ (rotr m) = id | 0 := take m, funext take i, elim0 i | (nat.succ n) := take m, funext take i, calc (mk_mod n (n*m)) + (-(mk_mod n (n*m)) + i) = i : add_neg_cancel_left lemma rotl_succ {n : nat} : (rotl 1) ∘ (@succ n) = lift_succ := funext (take i, eq_of_veq (begin rewrite [↑compose, ↑rotl, ↑madd, mul_one n, ↑mk_mod, mod_add_mod, ↑lift_succ, val_succ, -succ_add_eq_succ_add, add_mod_self_left, mod_eq_of_lt (lt.trans (is_lt i) !lt_succ_self), -val_lift] end)) definition list.rotl {A : Type} : ∀ l : list A, list A | [] := [] | (a::l) := l++[a] lemma rotl_cons {A : Type} {a : A} {l} : list.rotl (a::l) = l++[a] := rfl lemma rotl_map {A B : Type} {f : A → B} : ∀ {l : list A}, list.rotl (map f l) = map f (list.rotl l) | [] := rfl | (a::l) := begin rewrite [map_cons, *rotl_cons, map_append] end lemma rotl_eq_rotl : ∀ {n : nat}, map (rotl 1) (upto n) = list.rotl (upto n) | 0 := rfl | (succ n) := begin rewrite [upto_step at {1}, fin.upto_succ, rotl_cons, map_append], congruence, rewrite [map_map], congruence, exact rotl_succ, rewrite [map_singleton], congruence, rewrite [↑rotl, mul_one n, ↑mk_mod, ↑maxi, ↑madd], congruence, rewrite [ mod_add_mod, val_zero, add_zero, mod_eq_of_lt !lt_succ_self ] end definition seq [reducible] (A : Type) (n : nat) := fin n → A variable {A : Type} definition rotl_fun {n : nat} (m : nat) (f : seq A n) : seq A n := f ∘ (rotl m) definition rotr_fun {n : nat} (m : nat) (f : seq A n) : seq A n := f ∘ (rotr m) lemma rotl_seq_zero {n : nat} : rotl_fun 0 = @id (seq A n) := funext take f, begin rewrite [↑rotl_fun, rotl_zero] end lemma rotl_seq_ne_id : ∀ {n : nat}, (∃ a b : A, a ≠ b) → ∀ i, i < n → rotl_fun (succ i) ≠ (@id (seq A (succ n))) | 0 := assume Pex, take i, assume Piltn, absurd Piltn !not_lt_zero | (nat.succ n) := assume Pex, obtain a b Pne, from Pex, take i, assume Pilt, let f := (λ j : fin (succ (succ n)), if j = 0 then a else b), fi := mk_mod (succ n) (succ i) in have Pfne : rotl_fun (succ i) f fi ≠ f fi, from begin rewrite [↑rotl_fun, rotl_to_zero, mk_mod_of_lt (succ_lt_succ Pilt), if_pos rfl, if_neg mk_succ_ne_zero], assumption end, have P : rotl_fun (succ i) f ≠ f, from assume Peq, absurd (congr_fun Peq fi) Pfne, assume Peq, absurd (congr_fun Peq f) P lemma rotr_rotl_fun {n : nat} (m : nat) (f : seq A n) : rotr_fun m (rotl_fun m f) = f := calc f ∘ (rotl m) ∘ (rotr m) = f ∘ ((rotl m) ∘ (rotr m)) : by rewrite -compose.assoc ... = f ∘ id : by rewrite (rotl_rotr m) lemma rotl_fun_inj {n : nat} {m : nat} : @injective (seq A n) (seq A n) (rotl_fun m) := injective_of_has_left_inverse (exists.intro (rotr_fun m) (rotr_rotl_fun m)) lemma seq_rotl_eq_list_rotl {n : nat} (f : seq A n) : fun_to_list (rotl_fun 1 f) = list.rotl (fun_to_list f) := begin rewrite [↑fun_to_list, ↑rotl_fun, -map_map, rotl_map], congruence, exact rotl_eq_rotl end end rot section rotg open nat fin fintype definition rotl_perm [reducible] (A : Type) [finA : fintype A] [deceqA : decidable_eq A] (n : nat) (m : nat) : perm (seq A n) := perm.mk (rotl_fun m) rotl_fun_inj variable {A : Type} variable [finA : fintype A] variable [deceqA : decidable_eq A] variable {n : nat} include finA deceqA lemma rotl_perm_mul {i j : nat} : (rotl_perm A n i) * (rotl_perm A n j) = rotl_perm A n (j+i) := eq_of_feq (funext take f, calc f ∘ (rotl j) ∘ (rotl i) = f ∘ ((rotl j) ∘ (rotl i)) : by rewrite -compose.assoc ... = f ∘ (rotl (j+i)) : by rewrite rotl_compose) lemma rotl_perm_pow_eq : ∀ {i : nat}, (rotl_perm A n 1) ^ i = rotl_perm A n i | 0 := begin rewrite [pow_zero, ↑rotl_perm, perm_one, -eq_iff_feq], esimp, rewrite rotl_seq_zero end | (succ i) := begin rewrite [pow_succ', rotl_perm_pow_eq, rotl_perm_mul, one_add] end lemma rotl_perm_pow_eq_one : (rotl_perm A n 1) ^ n = 1 := eq.trans rotl_perm_pow_eq (eq_of_feq begin esimp [rotl_perm], rewrite [↑rotl_fun, rotl_id] end) lemma rotl_perm_mod {i : nat} : rotl_perm A n i = rotl_perm A n (i % n) := calc rotl_perm A n i = (rotl_perm A n 1) ^ i : by rewrite rotl_perm_pow_eq ... = (rotl_perm A n 1) ^ (i % n) : by rewrite (pow_mod rotl_perm_pow_eq_one) ... = rotl_perm A n (i % n) : by rewrite rotl_perm_pow_eq -- needs A to have at least two elements! lemma rotl_perm_pow_ne_one (Pex : ∃ a b : A, a ≠ b) : ∀ i, i < n → (rotl_perm A (succ n) 1)^(succ i) ≠ 1 := take i, assume Piltn, begin intro P, revert P, rewrite [rotl_perm_pow_eq, -eq_iff_feq, perm_one, *perm.f_mk], intro P, exact absurd P (rotl_seq_ne_id Pex i Piltn) end lemma rotl_perm_order (Pex : ∃ a b : A, a ≠ b) : order (rotl_perm A (succ n) 1) = (succ n) := order_of_min_pow rotl_perm_pow_eq_one (rotl_perm_pow_ne_one Pex) end rotg end group_theory