/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Floris van Doorn Squares in a type -/ import types.eq open eq equiv is_equiv sigma namespace eq variables {A B : Type} {a a' a'' a₀₀ a₂₀ a₄₀ a₀₂ a₂₂ a₂₄ a₀₄ a₄₂ a₄₄ a₁ a₂ a₃ a₄ : A} /-a₀₀-/ {p₁₀ p₁₀' : a₀₀ = a₂₀} /-a₂₀-/ {p₃₀ : a₂₀ = a₄₀} /-a₄₀-/ {p₀₁ p₀₁' : a₀₀ = a₀₂} /-s₁₁-/ {p₂₁ p₂₁' : a₂₀ = a₂₂} /-s₃₁-/ {p₄₁ : a₄₀ = a₄₂} /-a₀₂-/ {p₁₂ p₁₂' : a₀₂ = a₂₂} /-a₂₂-/ {p₃₂ : a₂₂ = a₄₂} /-a₄₂-/ {p₀₃ : a₀₂ = a₀₄} /-s₁₃-/ {p₂₃ : a₂₂ = a₂₄} /-s₃₃-/ {p₄₃ : a₄₂ = a₄₄} /-a₀₄-/ {p₁₄ : a₀₄ = a₂₄} /-a₂₄-/ {p₃₄ : a₂₄ = a₄₄} /-a₄₄-/ inductive square {A : Type} {a₀₀ : A} : Π{a₂₀ a₀₂ a₂₂ : A}, a₀₀ = a₂₀ → a₀₂ = a₂₂ → a₀₀ = a₀₂ → a₂₀ = a₂₂ → Type := ids : square idp idp idp idp /- square top bottom left right -/ variables {s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁} {s₃₁ : square p₃₀ p₃₂ p₂₁ p₄₁} {s₁₃ : square p₁₂ p₁₄ p₀₃ p₂₃} {s₃₃ : square p₃₂ p₃₄ p₂₃ p₄₃} definition ids [reducible] [constructor] := @square.ids definition idsquare [reducible] [constructor] (a : A) := @square.ids A a definition hrefl [unfold 4] (p : a = a') : square idp idp p p := by induction p; exact ids definition vrefl [unfold 4] (p : a = a') : square p p idp idp := by induction p; exact ids definition hrfl [reducible] [unfold 4] {p : a = a'} : square idp idp p p := !hrefl definition vrfl [reducible] [unfold 4] {p : a = a'} : square p p idp idp := !vrefl definition hdeg_square [unfold 6] {p q : a = a'} (r : p = q) : square idp idp p q := by induction r;apply hrefl definition vdeg_square [unfold 6] {p q : a = a'} (r : p = q) : square p q idp idp := by induction r;apply vrefl definition hconcat [unfold 16] (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) (s₃₁ : square p₃₀ p₃₂ p₂₁ p₄₁) : square (p₁₀ ⬝ p₃₀) (p₁₂ ⬝ p₃₂) p₀₁ p₄₁ := by induction s₃₁; exact s₁₁ definition vconcat [unfold 16] (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) (s₁₃ : square p₁₂ p₁₄ p₀₃ p₂₃) : square p₁₀ p₁₄ (p₀₁ ⬝ p₀₃) (p₂₁ ⬝ p₂₃) := by induction s₁₃; exact s₁₁ definition hinverse [unfold 10] (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) : square p₁₀⁻¹ p₁₂⁻¹ p₂₁ p₀₁ := by induction s₁₁;exact ids definition vinverse [unfold 10] (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) : square p₁₂ p₁₀ p₀₁⁻¹ p₂₁⁻¹ := by induction s₁₁;exact ids definition eq_vconcat [unfold 11] {p : a₀₀ = a₂₀} (r : p = p₁₀) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) : square p p₁₂ p₀₁ p₂₁ := by induction r; exact s₁₁ definition vconcat_eq [unfold 12] {p : a₀₂ = a₂₂} (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) (r : p₁₂ = p) : square p₁₀ p p₀₁ p₂₁ := by induction r; exact s₁₁ definition eq_hconcat [unfold 11] {p : a₀₀ = a₀₂} (r : p = p₀₁) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) : square p₁₀ p₁₂ p p₂₁ := by induction r; exact s₁₁ definition hconcat_eq [unfold 12] {p : a₂₀ = a₂₂} (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) (r : p₂₁ = p) : square p₁₀ p₁₂ p₀₁ p := by induction r; exact s₁₁ infix `⬝h`:75 := hconcat --type using \tr infix `⬝v`:75 := vconcat --type using \tr infix `⬝hp`:75 := hconcat_eq --type using \tr infix `⬝vp`:75 := vconcat_eq --type using \tr infix `⬝ph`:75 := eq_hconcat --type using \tr infix `⬝pv`:75 := eq_vconcat --type using \tr postfix `⁻¹ʰ`:(max+1) := hinverse --type using \-1h postfix `⁻¹ᵛ`:(max+1) := vinverse --type using \-1v definition transpose [unfold 10] (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) : square p₀₁ p₂₁ p₁₀ p₁₂ := by induction s₁₁;exact ids definition aps [unfold 12] {B : Type} (f : A → B) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) : square (ap f p₁₀) (ap f p₁₂) (ap f p₀₁) (ap f p₂₁) := by induction s₁₁;exact ids definition natural_square [unfold 8] {f g : A → B} (p : f ~ g) (q : a = a') : square (ap f q) (ap g q) (p a) (p a') := eq.rec_on q hrfl definition natural_square_tr [unfold 8] {f g : A → B} (p : f ~ g) (q : a = a') : square (p a) (p a') (ap f q) (ap g q) := eq.rec_on q vrfl /- canceling, whiskering and moving thinks along the sides of the square -/ definition whisker_tl (p : a = a₀₀) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) : square (p ⬝ p₁₀) p₁₂ (p ⬝ p₀₁) p₂₁ := by induction s₁₁;induction p;constructor definition whisker_br (p : a₂₂ = a) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) : square p₁₀ (p₁₂ ⬝ p) p₀₁ (p₂₁ ⬝ p) := by induction p;exact s₁₁ definition whisker_rt (p : a = a₂₀) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) : square (p₁₀ ⬝ p⁻¹) p₁₂ p₀₁ (p ⬝ p₂₁) := by induction s₁₁;induction p;constructor definition whisker_tr (p : a₂₀ = a) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) : square (p₁₀ ⬝ p) p₁₂ p₀₁ (p⁻¹ ⬝ p₂₁) := by induction s₁₁;induction p;constructor definition whisker_bl (p : a = a₀₂) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) : square p₁₀ (p ⬝ p₁₂) (p₀₁ ⬝ p⁻¹) p₂₁ := by induction s₁₁;induction p;constructor definition whisker_lb (p : a₀₂ = a) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) : square p₁₀ (p⁻¹ ⬝ p₁₂) (p₀₁ ⬝ p) p₂₁ := by induction s₁₁;induction p;constructor definition cancel_tl (p : a = a₀₀) (s₁₁ : square (p ⬝ p₁₀) p₁₂ (p ⬝ p₀₁) p₂₁) : square p₁₀ p₁₂ p₀₁ p₂₁ := by induction p; rewrite +idp_con at s₁₁; exact s₁₁ definition cancel_br (p : a₂₂ = a) (s₁₁ : square p₁₀ (p₁₂ ⬝ p) p₀₁ (p₂₁ ⬝ p)) : square p₁₀ p₁₂ p₀₁ p₂₁ := by induction p;exact s₁₁ definition cancel_rt (p : a = a₂₀) (s₁₁ : square (p₁₀ ⬝ p⁻¹) p₁₂ p₀₁ (p ⬝ p₂₁)) : square p₁₀ p₁₂ p₀₁ p₂₁ := by induction p; rewrite idp_con at s₁₁; exact s₁₁ definition cancel_tr (p : a₂₀ = a) (s₁₁ : square (p₁₀ ⬝ p) p₁₂ p₀₁ (p⁻¹ ⬝ p₂₁)) : square p₁₀ p₁₂ p₀₁ p₂₁ := by induction p; rewrite [▸* at s₁₁,idp_con at s₁₁]; exact s₁₁ definition cancel_bl (p : a = a₀₂) (s₁₁ : square p₁₀ (p ⬝ p₁₂) (p₀₁ ⬝ p⁻¹) p₂₁) : square p₁₀ p₁₂ p₀₁ p₂₁ := by induction p; rewrite idp_con at s₁₁; exact s₁₁ definition cancel_lb (p : a₀₂ = a) (s₁₁ : square p₁₀ (p⁻¹ ⬝ p₁₂) (p₀₁ ⬝ p) p₂₁) : square p₁₀ p₁₂ p₀₁ p₂₁ := by induction p; rewrite [▸* at s₁₁,idp_con at s₁₁]; exact s₁₁ definition move_top_of_left {p : a₀₀ = a} {q : a = a₀₂} (s : square p₁₀ p₁₂ (p ⬝ q) p₂₁) : square (p⁻¹ ⬝ p₁₀) p₁₂ q p₂₁ := by apply cancel_tl p; rewrite con_inv_cancel_left; exact s definition move_top_of_left' {p : a = a₀₀} {q : a = a₀₂} (s : square p₁₀ p₁₂ (p⁻¹ ⬝ q) p₂₁) : square (p ⬝ p₁₀) p₁₂ q p₂₁ := by apply cancel_tl p⁻¹; rewrite inv_con_cancel_left; exact s definition move_left_of_top {p : a₀₀ = a} {q : a = a₂₀} (s : square (p ⬝ q) p₁₂ p₀₁ p₂₁) : square q p₁₂ (p⁻¹ ⬝ p₀₁) p₂₁ := by apply cancel_tl p; rewrite con_inv_cancel_left; exact s definition move_left_of_top' {p : a = a₀₀} {q : a = a₂₀} (s : square (p⁻¹ ⬝ q) p₁₂ p₀₁ p₂₁) : square q p₁₂ (p ⬝ p₀₁) p₂₁ := by apply cancel_tl p⁻¹; rewrite inv_con_cancel_left; exact s definition move_bot_of_right {p : a₂₀ = a} {q : a = a₂₂} (s : square p₁₀ p₁₂ p₀₁ (p ⬝ q)) : square p₁₀ (p₁₂ ⬝ q⁻¹) p₀₁ p := by apply cancel_br q; rewrite inv_con_cancel_right; exact s definition move_bot_of_right' {p : a₂₀ = a} {q : a₂₂ = a} (s : square p₁₀ p₁₂ p₀₁ (p ⬝ q⁻¹)) : square p₁₀ (p₁₂ ⬝ q) p₀₁ p := by apply cancel_br q⁻¹; rewrite con_inv_cancel_right; exact s definition move_right_of_bot {p : a₀₂ = a} {q : a = a₂₂} (s : square p₁₀ (p ⬝ q) p₀₁ p₂₁) : square p₁₀ p p₀₁ (p₂₁ ⬝ q⁻¹) := by apply cancel_br q; rewrite inv_con_cancel_right; exact s definition move_right_of_bot' {p : a₀₂ = a} {q : a₂₂ = a} (s : square p₁₀ (p ⬝ q⁻¹) p₀₁ p₂₁) : square p₁₀ p p₀₁ (p₂₁ ⬝ q) := by apply cancel_br q⁻¹; rewrite con_inv_cancel_right; exact s definition move_top_of_right {p : a₂₀ = a} {q : a = a₂₂} (s : square p₁₀ p₁₂ p₀₁ (p ⬝ q)) : square (p₁₀ ⬝ p) p₁₂ p₀₁ q := by apply cancel_rt p; rewrite con_inv_cancel_right; exact s definition move_right_of_top {p : a₀₀ = a} {q : a = a₂₀} (s : square (p ⬝ q) p₁₂ p₀₁ p₂₁) : square p p₁₂ p₀₁ (q ⬝ p₂₁) := by apply cancel_tr q; rewrite inv_con_cancel_left; exact s definition move_bot_of_left {p : a₀₀ = a} {q : a = a₀₂} (s : square p₁₀ p₁₂ (p ⬝ q) p₂₁) : square p₁₀ (q ⬝ p₁₂) p p₂₁ := by apply cancel_lb q; rewrite inv_con_cancel_left; exact s definition move_left_of_bot {p : a₀₂ = a} {q : a = a₂₂} (s : square p₁₀ (p ⬝ q) p₀₁ p₂₁) : square p₁₀ q (p₀₁ ⬝ p) p₂₁ := by apply cancel_bl p; rewrite con_inv_cancel_right; exact s /- some higher ∞-groupoid operations -/ definition vconcat_vrfl (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) : s₁₁ ⬝v vrefl p₁₂ = s₁₁ := by induction s₁₁; reflexivity definition hconcat_hrfl (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) : s₁₁ ⬝h hrefl p₂₁ = s₁₁ := by induction s₁₁; reflexivity /- equivalences -/ definition eq_of_square [unfold 10] (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) : p₁₀ ⬝ p₂₁ = p₀₁ ⬝ p₁₂ := by induction s₁₁; apply idp definition square_of_eq (r : p₁₀ ⬝ p₂₁ = p₀₁ ⬝ p₁₂) : square p₁₀ p₁₂ p₀₁ p₂₁ := by induction p₁₂; esimp at r; induction r; induction p₂₁; induction p₁₀; exact ids definition eq_top_of_square [unfold 10] (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) : p₁₀ = p₀₁ ⬝ p₁₂ ⬝ p₂₁⁻¹ := by induction s₁₁; apply idp definition square_of_eq_top (r : p₁₀ = p₀₁ ⬝ p₁₂ ⬝ p₂₁⁻¹) : square p₁₀ p₁₂ p₀₁ p₂₁ := by induction p₂₁; induction p₁₂; esimp at r;induction r;induction p₁₀;exact ids definition eq_bot_of_square [unfold 10] (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) : p₁₂ = p₀₁⁻¹ ⬝ p₁₀ ⬝ p₂₁ := by induction s₁₁; apply idp definition square_equiv_eq [constructor] (t : a₀₀ = a₀₂) (b : a₂₀ = a₂₂) (l : a₀₀ = a₂₀) (r : a₀₂ = a₂₂) : square t b l r ≃ t ⬝ r = l ⬝ b := begin fapply equiv.MK, { exact eq_of_square}, { exact square_of_eq}, { intro s, induction b, esimp [concat] at s, induction s, induction r, induction t, apply idp}, { intro s, induction s, apply idp}, end definition hdeg_square_equiv' [constructor] (p q : a = a') : square idp idp p q ≃ p = q := by transitivity _;apply square_equiv_eq;transitivity _;apply eq_equiv_eq_symm; apply equiv_eq_closed_right;apply idp_con definition vdeg_square_equiv' [constructor] (p q : a = a') : square p q idp idp ≃ p = q := by transitivity _;apply square_equiv_eq;apply equiv_eq_closed_right; apply idp_con definition eq_of_hdeg_square [reducible] {p q : a = a'} (s : square idp idp p q) : p = q := to_fun !hdeg_square_equiv' s definition eq_of_vdeg_square [reducible] {p q : a = a'} (s : square p q idp idp) : p = q := to_fun !vdeg_square_equiv' s definition top_deg_square (l : a₁ = a₂) (b : a₂ = a₃) (r : a₄ = a₃) : square (l ⬝ b ⬝ r⁻¹) b l r := by induction r;induction b;induction l;constructor definition bot_deg_square (l : a₁ = a₂) (t : a₁ = a₃) (r : a₃ = a₄) : square t (l⁻¹ ⬝ t ⬝ r) l r := by induction r;induction t;induction l;constructor /- the following two equivalences have as underlying inverse function the functions hdeg_square and vdeg_square, respectively. See example below the definition -/ definition hdeg_square_equiv [constructor] (p q : a = a') : square idp idp p q ≃ p = q := begin fapply equiv_change_fun, { fapply equiv_change_inv, apply hdeg_square_equiv', exact hdeg_square, intro s, induction s, induction p, reflexivity}, { exact eq_of_hdeg_square}, { reflexivity} end definition vdeg_square_equiv [constructor] (p q : a = a') : square p q idp idp ≃ p = q := begin fapply equiv_change_fun, { fapply equiv_change_inv, apply vdeg_square_equiv',exact vdeg_square, intro s, induction s, induction p, reflexivity}, { exact eq_of_vdeg_square}, { reflexivity} end example (p q : a = a') : to_inv (hdeg_square_equiv p q) = hdeg_square := idp /- characterization of pathovers in a equality type. The type B of the equality is fixed here. A version where B may also varies over the path p is given in the file squareover -/ definition eq_pathover [unfold 7] {f g : A → B} {p : a = a'} {q : f a = g a} {r : f a' = g a'} (s : square q r (ap f p) (ap g p)) : q =[p] r := by induction p;apply pathover_idp_of_eq;exact eq_of_vdeg_square s definition square_of_pathover [unfold 7] {f g : A → B} {p : a = a'} {q : f a = g a} {r : f a' = g a'} (s : q =[p] r) : square q r (ap f p) (ap g p) := by induction p;apply vdeg_square;exact eq_of_pathover_idp s /- interaction of equivalences with operations on squares -/ definition eq_pathover_equiv_square [constructor] {f g : A → B} (p : a = a') (q : f a = g a) (r : f a' = g a') : q =[p] r ≃ square q r (ap f p) (ap g p) := equiv.MK square_of_pathover eq_pathover begin intro s, induction p, esimp [square_of_pathover,eq_pathover], exact ap vdeg_square (to_right_inv !pathover_idp (eq_of_vdeg_square s)) ⬝ to_left_inv !vdeg_square_equiv s end begin intro s, induction p, esimp [square_of_pathover,eq_pathover], exact ap pathover_idp_of_eq (to_right_inv !vdeg_square_equiv (eq_of_pathover_idp s)) ⬝ to_left_inv !pathover_idp s end definition square_of_pathover_eq_concato {f g : A → B} {p : a = a'} {q q' : f a = g a} {r : f a' = g a'} (s' : q = q') (s : q' =[p] r) : square_of_pathover (s' ⬝po s) = s' ⬝pv square_of_pathover s := by induction s;induction s';reflexivity definition square_of_pathover_concato_eq {f g : A → B} {p : a = a'} {q : f a = g a} {r r' : f a' = g a'} (s' : r = r') (s : q =[p] r) : square_of_pathover (s ⬝op s') = square_of_pathover s ⬝vp s' := by induction s;induction s';reflexivity definition square_of_pathover_concato {f g : A → B} {p : a = a'} {p' : a' = a''} {q : f a = g a} {q' : f a' = g a'} {q'' : f a'' = g a''} (s : q =[p] q') (s' : q' =[p'] q'') : square_of_pathover (s ⬝o s') = ap_con f p p' ⬝ph (square_of_pathover s ⬝v square_of_pathover s') ⬝hp (ap_con g p p')⁻¹ := by induction s';induction s;esimp [ap_con,hconcat_eq];exact !vconcat_vrfl⁻¹ definition eq_of_square_hrfl [unfold 4] (p : a = a') : eq_of_square hrfl = idp_con p := by induction p;reflexivity definition eq_of_square_vrfl [unfold 4] (p : a = a') : eq_of_square vrfl = (idp_con p)⁻¹ := by induction p;reflexivity definition eq_of_square_hdeg_square {p q : a = a'} (r : p = q) : eq_of_square (hdeg_square r) = !idp_con ⬝ r⁻¹ := by induction r;induction p;reflexivity definition eq_of_square_vdeg_square {p q : a = a'} (r : p = q) : eq_of_square (vdeg_square r) = r ⬝ !idp_con⁻¹ := by induction r;induction p;reflexivity definition eq_of_square_eq_vconcat {p : a₀₀ = a₂₀} (r : p = p₁₀) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) : eq_of_square (r ⬝pv s₁₁) = whisker_right r p₂₁ ⬝ eq_of_square s₁₁ := by induction s₁₁;cases r;reflexivity definition eq_of_square_eq_hconcat {p : a₀₀ = a₀₂} (r : p = p₀₁) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) : eq_of_square (r ⬝ph s₁₁) = eq_of_square s₁₁ ⬝ (whisker_right r p₁₂)⁻¹ := by induction r;reflexivity definition eq_of_square_vconcat_eq {p : a₀₂ = a₂₂} (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) (r : p₁₂ = p) : eq_of_square (s₁₁ ⬝vp r) = eq_of_square s₁₁ ⬝ whisker_left p₀₁ r := by induction r;reflexivity definition eq_of_square_hconcat_eq {p : a₂₀ = a₂₂} (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) (r : p₂₁ = p) : eq_of_square (s₁₁ ⬝hp r) = (whisker_left p₁₀ r)⁻¹ ⬝ eq_of_square s₁₁ := by induction s₁₁; induction r;reflexivity -- definition vconcat_eq [unfold 11] {p : a₀₂ = a₂₂} (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) (r : p₁₂ = p) : -- square p₁₀ p p₀₁ p₂₁ := -- by induction r; exact s₁₁ -- definition eq_hconcat [unfold 11] {p : a₀₀ = a₀₂} (r : p = p₀₁) -- (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) : square p₁₀ p₁₂ p p₂₁ := -- by induction r; exact s₁₁ -- definition hconcat_eq [unfold 11] {p : a₂₀ = a₂₂} -- (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) (r : p₂₁ = p) : square p₁₀ p₁₂ p₀₁ p := -- by induction r; exact s₁₁ -- the following definition is very slow, maybe it's interesting to see why? -- definition eq_pathover_equiv_square' {f g : A → B}(p : a = a') (q : f a = g a) (r : f a' = g a') -- : square q r (ap f p) (ap g p) ≃ q =[p] r := -- equiv.MK eq_pathover -- square_of_pathover -- (λs, begin -- induction p, rewrite [↑[square_of_pathover,eq_pathover], -- to_right_inv !vdeg_square_equiv (eq_of_pathover_idp s), -- to_left_inv !pathover_idp s] -- end) -- (λs, begin -- induction p, rewrite [↑[square_of_pathover,eq_pathover],▸*, -- to_right_inv !(@pathover_idp A) (eq_of_vdeg_square s), -- to_left_inv !vdeg_square_equiv s] -- end) /- recursors for squares where some sides are reflexivity -/ definition rec_on_b [recursor] {a₀₀ : A} {P : Π{a₂₀ a₁₂ : A} {t : a₀₀ = a₂₀} {l : a₀₀ = a₁₂} {r : a₂₀ = a₁₂}, square t idp l r → Type} {a₂₀ a₁₂ : A} {t : a₀₀ = a₂₀} {l : a₀₀ = a₁₂} {r : a₂₀ = a₁₂} (s : square t idp l r) (H : P ids) : P s := have H2 : P (square_of_eq (eq_of_square s)), from eq.rec_on (eq_of_square s : t ⬝ r = l) (by induction r; induction t; exact H), left_inv (to_fun !square_equiv_eq) s ▸ H2 definition rec_on_r [recursor] {a₀₀ : A} {P : Π{a₀₂ a₂₁ : A} {t : a₀₀ = a₂₁} {b : a₀₂ = a₂₁} {l : a₀₀ = a₀₂}, square t b l idp → Type} {a₀₂ a₂₁ : A} {t : a₀₀ = a₂₁} {b : a₀₂ = a₂₁} {l : a₀₀ = a₀₂} (s : square t b l idp) (H : P ids) : P s := let p : l ⬝ b = t := (eq_of_square s)⁻¹ in have H2 : P (square_of_eq (eq_of_square s)⁻¹⁻¹), from @eq.rec_on _ _ (λx p, P (square_of_eq p⁻¹)) _ p (by induction b; induction l; exact H), left_inv (to_fun !square_equiv_eq) s ▸ !inv_inv ▸ H2 definition rec_on_l [recursor] {a₀₁ : A} {P : Π {a₂₀ a₂₂ : A} {t : a₀₁ = a₂₀} {b : a₀₁ = a₂₂} {r : a₂₀ = a₂₂}, square t b idp r → Type} {a₂₀ a₂₂ : A} {t : a₀₁ = a₂₀} {b : a₀₁ = a₂₂} {r : a₂₀ = a₂₂} (s : square t b idp r) (H : P ids) : P s := let p : t ⬝ r = b := eq_of_square s ⬝ !idp_con in have H2 : P (square_of_eq (p ⬝ !idp_con⁻¹)), from eq.rec_on p (by induction r; induction t; exact H), left_inv (to_fun !square_equiv_eq) s ▸ !con_inv_cancel_right ▸ H2 definition rec_on_t [recursor] {a₁₀ : A} {P : Π {a₀₂ a₂₂ : A} {b : a₀₂ = a₂₂} {l : a₁₀ = a₀₂} {r : a₁₀ = a₂₂}, square idp b l r → Type} {a₀₂ a₂₂ : A} {b : a₀₂ = a₂₂} {l : a₁₀ = a₀₂} {r : a₁₀ = a₂₂} (s : square idp b l r) (H : P ids) : P s := let p : l ⬝ b = r := (eq_of_square s)⁻¹ ⬝ !idp_con in assert H2 : P (square_of_eq ((p ⬝ !idp_con⁻¹)⁻¹)), from eq.rec_on p (by induction b; induction l; exact H), assert H3 : P (square_of_eq ((eq_of_square s)⁻¹⁻¹)), from eq.rec_on !con_inv_cancel_right H2, assert H4 : P (square_of_eq (eq_of_square s)), from eq.rec_on !inv_inv H3, proof left_inv (to_fun !square_equiv_eq) s ▸ H4 qed definition rec_on_tb [recursor] {a : A} {P : Π{b : A} {l : a = b} {r : a = b}, square idp idp l r → Type} {b : A} {l : a = b} {r : a = b} (s : square idp idp l r) (H : P ids) : P s := have H2 : P (square_of_eq (eq_of_square s)), from eq.rec_on (eq_of_square s : idp ⬝ r = l) (by induction r; exact H), left_inv (to_fun !square_equiv_eq) s ▸ H2 definition rec_on_lr [recursor] {a : A} {P : Π{a' : A} {t : a = a'} {b : a = a'}, square t b idp idp → Type} {a' : A} {t : a = a'} {b : a = a'} (s : square t b idp idp) (H : P ids) : P s := let p : idp ⬝ b = t := (eq_of_square s)⁻¹ in assert H2 : P (square_of_eq (eq_of_square s)⁻¹⁻¹), from @eq.rec_on _ _ (λx q, P (square_of_eq q⁻¹)) _ p (by induction b; exact H), to_left_inv (!square_equiv_eq) s ▸ !inv_inv ▸ H2 --we can also do the other recursors (tl, tr, bl, br, tbl, tbr, tlr, blr), but let's postpone this until they are needed definition whisker_square [unfold 14 15 16 17] (r₁₀ : p₁₀ = p₁₀') (r₁₂ : p₁₂ = p₁₂') (r₀₁ : p₀₁ = p₀₁') (r₂₁ : p₂₁ = p₂₁') (s : square p₁₀ p₁₂ p₀₁ p₂₁) : square p₁₀' p₁₂' p₀₁' p₂₁' := by induction r₁₀; induction r₁₂; induction r₀₁; induction r₂₁; exact s /- squares commute with some operations on 2-paths -/ definition square_inv2 {p₁ p₂ p₃ p₄ : a = a'} {t : p₁ = p₂} {b : p₃ = p₄} {l : p₁ = p₃} {r : p₂ = p₄} (s : square t b l r) : square (inverse2 t) (inverse2 b) (inverse2 l) (inverse2 r) := by induction s;constructor definition square_con2 {p₁ p₂ p₃ p₄ : a₁ = a₂} {q₁ q₂ q₃ q₄ : a₂ = a₃} {t₁ : p₁ = p₂} {b₁ : p₃ = p₄} {l₁ : p₁ = p₃} {r₁ : p₂ = p₄} {t₂ : q₁ = q₂} {b₂ : q₃ = q₄} {l₂ : q₁ = q₃} {r₂ : q₂ = q₄} (s₁ : square t₁ b₁ l₁ r₁) (s₂ : square t₂ b₂ l₂ r₂) : square (t₁ ◾ t₂) (b₁ ◾ b₂) (l₁ ◾ l₂) (r₁ ◾ r₂) := by induction s₂;induction s₁;constructor open is_trunc definition is_hset.elims [H : is_hset A] : square p₁₀ p₁₂ p₀₁ p₂₁ := square_of_eq !is_hset.elim -- definition square_of_con_inv_hsquare {p₁ p₂ p₃ p₄ : a₁ = a₂} -- {t : p₁ = p₂} {b : p₃ = p₄} {l : p₁ = p₃} {r : p₂ = p₄} -- (s : square (con_inv_eq_idp t) (con_inv_eq_idp b) (l ◾ r⁻²) idp) -- : square t b l r := -- sorry --by induction s /- Square fillers -/ -- TODO replace by "more algebraic" fillers? variables (p₁₀ p₁₂ p₀₁ p₂₁) definition square_fill_t : Σ (p : a₀₀ = a₂₀), square p p₁₂ p₀₁ p₂₁ := by induction p₀₁; induction p₂₁; exact ⟨_, !vrefl⟩ definition square_fill_b : Σ (p : a₀₂ = a₂₂), square p₁₀ p p₀₁ p₂₁ := by induction p₀₁; induction p₂₁; exact ⟨_, !vrefl⟩ definition square_fill_l : Σ (p : a₀₀ = a₀₂), square p₁₀ p₁₂ p p₂₁ := by induction p₁₀; induction p₁₂; exact ⟨_, !hrefl⟩ definition square_fill_r : Σ (p : a₂₀ = a₂₂) , square p₁₀ p₁₂ p₀₁ p := by induction p₁₀; induction p₁₂; exact ⟨_, !hrefl⟩ --TODO find better names definition square_Flr_ap_idp {A B : Type} {c : B} {f : A → B} (p : Π a, f a = c) {a b : A} (q : a = b) : square (p a) (p b) (ap f q) idp := by induction q; apply vrfl definition square_Flr_idp_ap {A B : Type} {c : B} {f : A → B} (p : Π a, c = f a) {a b : A} (q : a = b) : square (p a) (p b) idp (ap f q) := by induction q; apply vrfl definition square_ap_idp_Flr {A B : Type} {b : B} {f : A → B} (p : Π a, f a = b) {a b : A} (q : a = b) : square (ap f q) idp (p a) (p b) := by induction q; apply hrfl end eq