-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura, Jeremy Avigad, Floris van Doorn prelude import init.num init.wf init.logic init.tactic structure sigma {A : Type} (B : A → Type) := dpair :: (dpr1 : A) (dpr2 : B dpr1) notation `Σ` binders `,` r:(scoped P, sigma P) := r namespace sigma notation `dpr₁` := dpr1 notation `dpr₂` := dpr2 namespace ops postfix `.1`:(max+1) := dpr1 postfix `.2`:(max+1) := dpr2 notation `⟨` t:(foldr `,` (e r, sigma.dpair e r)) `⟩`:0 := t --input ⟨ ⟩ as \< \> end ops open well_founded section variables {A : Type} {B : A → Type} variable (Ra : A → A → Prop) variable (Rb : ∀ a, B a → B a → Prop) -- Lexicographical order based on Ra and Rb inductive lex : sigma B → sigma B → Prop := left : ∀{a₁ b₁} a₂ b₂, Ra a₁ a₂ → lex (dpair a₁ b₁) (dpair a₂ b₂), right : ∀a {b₁ b₂}, Rb a b₁ b₂ → lex (dpair a b₁) (dpair a b₂) end context parameters {A : Type} {B : A → Type} parameters {Ra : A → A → Prop} {Rb : Π a : A, B a → B a → Prop} infix `≺`:50 := lex Ra Rb set_option pp.beta true variables {C : Πa, B a → Type} {D : Πa b, C a b → Type} variables {a a' : A} {b : B a} {b' : B a'} {c : C a b} {c' : C a' b'} {d : D a b c} {d' : D a' b' c'} private theorem hcongr_arg2 (f : Πa b, C a b) (Ha : a = a') (Hb : b == b') : f a b == f a' b' := hcongr (hcongr_arg f Ha) (hcongr_arg C Ha) Hb private theorem hcongr_arg3 (f : Πa b c, D a b c) (Ha : a = a') (Hb : b == b') (Hc : c == c') : f a b c == f a' b' c' := hcongr (hcongr_arg2 f Ha Hb) (hcongr_arg2 D Ha Hb) Hc definition lex.accessible {a} (aca : acc Ra a) (acb : ∀a, well_founded (Rb a)) : ∀ (b : B a), acc (lex Ra Rb) (dpair a b) := acc.rec_on aca (λxa aca (iHa : ∀y, Ra y xa → ∀b : B y, acc (lex Ra Rb) (dpair y b)), λb : B xa, acc.rec_on (acb xa b) (λxb acb (iHb : ∀y, Rb xa y xb → acc (lex Ra Rb) (dpair xa y)), acc.intro (dpair xa xb) (λp (lt : p ≺ (dpair xa xb)), have aux : xa = xa → xb == xb → acc (lex Ra Rb) p, from @lex.rec_on A B Ra Rb (λp₁ p₂, dpr1 p₂ = xa → dpr2 p₂ == xb → acc (lex Ra Rb) p₁) p (dpair xa xb) lt (λa₁ b₁ a₂ b₂ (H : Ra a₁ a₂) (eq₂ : a₂ = xa) (eq₃ : b₂ == xb), show acc (lex Ra Rb) (dpair a₁ b₁), from have Ra₁ : Ra a₁ xa, from eq.rec_on eq₂ H, iHa a₁ Ra₁ b₁) (λa b₁ b₂ (H : Rb a b₁ b₂) (eq₂ : a = xa) (eq₃ : b₂ == xb), -- TODO(Leo): cleanup this proof show acc (lex Ra Rb) (dpair a b₁), from let b₁' : B xa := eq.rec_on eq₂ b₁ in have aux₁ : b₁ == b₁', from heq.symm (eq_rec_heq eq₂ b₁), have aux₂ : Rb a b₁ b₂ = Rb xa b₁' xb, from heq.to_eq (hcongr_arg3 Rb eq₂ aux₁ eq₃), have aux₃ : Rb xa b₁' xb, from eq.rec_on aux₂ H, have aux₄ : acc (lex Ra Rb) (dpair xa b₁'), from iHb b₁' aux₃, have aux₅ : ∀ (b₁ b₂ : B a) (H₁ : a = a) (H₂ : b₁ == b₂), acc (lex Ra Rb) (dpair a b₁) → acc (lex Ra Rb) (dpair a b₂), from λ b₁ b₂ H₁ H₂ Ha, eq.rec_on (heq.to_eq H₂) Ha, have aux₆ : ∀ (b₁ : B xa) (b₂ : B a) (H₁ : a = xa) (H₂ : b₁ == b₂), acc (lex Ra Rb) (dpair xa b₁) → acc (lex Ra Rb) (dpair a b₂), from eq.rec_on eq₂ aux₅, aux₆ b₁' b₁ eq₂ (heq.symm aux₁) aux₄), aux rfl !heq.refl))) -- The lexicographical order of well founded relations is well-founded definition lex.wf (Ha : well_founded Ra) (Hb : ∀ x, well_founded (Rb x)) : well_founded (lex Ra Rb) := well_founded.intro (λp, destruct p (λa b, lex.accessible (Ha a) Hb b)) end end sigma