/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn, Jakob von Raumer Comma category -/ import ..functor cubical.pathover ..strict ..category open core eq functor equiv sigma sigma.ops is_trunc cubical iso namespace category structure comma_object {A B C : Precategory} (S : A ⇒ C) (T : B ⇒ C) := (a : A) (b : B) (f : S a ⟶ T b) abbreviation ob1 := @comma_object.a abbreviation ob2 := @comma_object.b abbreviation mor := @comma_object.f variables {A B C : Precategory} (S : A ⇒ C) (T : B ⇒ C) definition comma_object_sigma_char : (Σ(a : A) (b : B), S a ⟶ T b) ≃ comma_object S T := begin fapply equiv.MK, { intro u, exact comma_object.mk u.1 u.2.1 u.2.2}, { intro x, cases x with a b f, exact ⟨a, b, f⟩}, { intro x, cases x, reflexivity}, { intro u, cases u with u1 u2, cases u2, reflexivity}, end theorem is_trunc_comma_object (n : trunc_index) [HA : is_trunc n A] [HB : is_trunc n B] [H : Π(s d : C), is_trunc n (hom s d)] : is_trunc n (comma_object S T) := by apply is_trunc_equiv_closed;apply comma_object_sigma_char variables {S T} definition comma_object_eq' {x y : comma_object S T} (p : ob1 x = ob1 y) (q : ob2 x = ob2 y) (r : mor x =[ap011 (@hom C C) (ap (to_fun_ob S) p) (ap (to_fun_ob T) q)] mor y) : x = y := begin cases x with a b f, cases y with a' b' f', cases p, cases q, esimp [ap011,congr,core.ap,subst] at r, eapply (idp_rec_on r), reflexivity end -- definition comma_object_eq {x y : comma_object S T} (p : ob1 x = ob1 y) (q : ob2 x = ob2 y) -- (r : T (hom_of_eq q) ∘ mor x ∘ S (inv_of_eq p) = mor y) : x = y := -- begin -- fapply comma_object_eq' p q, -- --cases x with a b f, cases y with a' b' f', cases p, cases q, -- --esimp [ap011,congr,core.ap,subst] at r, -- --eapply (idp_rec_on r), reflexivity -- end definition ap_ob1_comma_object_eq' (x y : comma_object S T) (p : ob1 x = ob1 y) (q : ob2 x = ob2 y) (r : mor x =[ap011 (@hom C C) (ap (to_fun_ob S) p) (ap (to_fun_ob T) q)] mor y) : ap ob1 (comma_object_eq' p q r) = p := begin cases x with a b f, cases y with a' b' f', cases p, cases q, eapply (idp_rec_on r), reflexivity end definition ap_ob2_comma_object_eq' (x y : comma_object S T) (p : ob1 x = ob1 y) (q : ob2 x = ob2 y) (r : mor x =[ap011 (@hom C C) (ap (to_fun_ob S) p) (ap (to_fun_ob T) q)] mor y) : ap ob2 (comma_object_eq' p q r) = q := begin cases x with a b f, cases y with a' b' f', cases p, cases q, eapply (idp_rec_on r), reflexivity end structure comma_morphism (x y : comma_object S T) := mk' :: (g : ob1 x ⟶ ob1 y) (h : ob2 x ⟶ ob2 y) (p : T h ∘ mor x = mor y ∘ S g) (p' : mor y ∘ S g = T h ∘ mor x) abbreviation mor1 := @comma_morphism.g abbreviation mor2 := @comma_morphism.h abbreviation coh := @comma_morphism.p abbreviation coh' := @comma_morphism.p' protected definition comma_morphism.mk [constructor] [reducible] {x y : comma_object S T} (g h p) : comma_morphism x y := comma_morphism.mk' g h p p⁻¹ variables (x y z w : comma_object S T) definition comma_morphism_sigma_char : (Σ(g : ob1 x ⟶ ob1 y) (h : ob2 x ⟶ ob2 y), T h ∘ mor x = mor y ∘ S g) ≃ comma_morphism x y := begin fapply equiv.MK, { intro u, exact (comma_morphism.mk u.1 u.2.1 u.2.2)}, { intro f, cases f with g h p p', exact ⟨g, h, p⟩}, { intro f, cases f with g h p p', esimp, apply ap (comma_morphism.mk' g h p), apply is_hprop.elim}, { intro u, cases u with u1 u2, cases u2 with u2 u3, reflexivity}, end theorem is_trunc_comma_morphism (n : trunc_index) [H1 : is_trunc n (ob1 x ⟶ ob1 y)] [H2 : is_trunc n (ob2 x ⟶ ob2 y)] [Hp : Πm1 m2, is_trunc n (T m2 ∘ mor x = mor y ∘ S m1)] : is_trunc n (comma_morphism x y) := by apply is_trunc_equiv_closed; apply comma_morphism_sigma_char variables {x y z w} definition comma_morphism_eq {f f' : comma_morphism x y} (p : mor1 f = mor1 f') (q : mor2 f = mor2 f') : f = f' := begin cases f with g h p₁ p₁', cases f' with g' h' p₂ p₂', cases p, cases q, apply ap011 (comma_morphism.mk' g' h'), apply is_hprop.elim, apply is_hprop.elim end definition comma_compose (g : comma_morphism y z) (f : comma_morphism x y) : comma_morphism x z := comma_morphism.mk (mor1 g ∘ mor1 f) (mor2 g ∘ mor2 f) (by rewrite [+respect_comp,-assoc,coh,assoc,coh,-assoc]) local infix `∘∘`:60 := comma_compose definition comma_id : comma_morphism x x := comma_morphism.mk id id (by rewrite [+respect_id,id_left,id_right]) theorem comma_assoc (h : comma_morphism z w) (g : comma_morphism y z) (f : comma_morphism x y) : h ∘∘ (g ∘∘ f) = (h ∘∘ g) ∘∘ f := comma_morphism_eq !assoc !assoc theorem comma_id_left (f : comma_morphism x y) : comma_id ∘∘ f = f := comma_morphism_eq !id_left !id_left theorem comma_id_right (f : comma_morphism x y) : f ∘∘ comma_id = f := comma_morphism_eq !id_right !id_right variables (S T) definition comma_category [constructor] : Precategory := precategory.MK (comma_object S T) comma_morphism (λa b, !is_trunc_comma_morphism) (@comma_compose _ _ _ _ _) (@comma_id _ _ _ _ _) (@comma_assoc _ _ _ _ _) (@comma_id_left _ _ _ _ _) (@comma_id_right _ _ _ _ _) --TODO: this definition doesn't use category structure of A and B definition strict_precategory_comma [HA : strict_precategory A] [HB : strict_precategory B] : strict_precategory (comma_object S T) := strict_precategory.mk (comma_category S T) !is_trunc_comma_object -- definition is_univalent_comma (HA : is_univalent A) (HB : is_univalent B) -- : is_univalent (comma_category S T) := -- begin -- intros c d, -- fapply adjointify, -- { intro i, cases i with f s, cases s with g l r, cases f with fA fB fp, cases g with gA gB gp, -- esimp at *, fapply comma_object_eq', unfold is_univalent at (HA, HB), -- {apply iso_of_eq⁻¹ᶠ, exact (iso.MK fA gA (ap mor1 l) (ap mor1 r))}, -- {apply iso_of_eq⁻¹ᶠ, exact (iso.MK fB gB (ap mor2 l) (ap mor2 r))}, -- { apply sorry}}, -- { apply sorry}, -- { apply sorry}, -- end end category