local env = environment() local l = mk_param_univ("l") local U_l = mk_sort(l) local A = Local("A", U_l) local U_l1 = mk_sort(max_univ(l, 1)) -- Make sure U_l1 is not Prop local list_l = Const("list", {l}) -- list.{l} local Nat = Const("nat") local vec_l = Const("vec", {l}) -- vec.{l} local zero = Const("zero") local succ = Const("succ") local forest_l = Const("forest", {l}) local tree_l = Const("tree", {l}) local n = Local("n", Nat) env = env:add_universe("u") env = env:add_universe("v") local u = global_univ("u") local v = global_univ("v") function display_type(env, t) print(tostring(t) .. " : " .. tostring(type_checker(env):check(t))) end env = add_inductive(env, "nat", Type, "zero", Nat, "succ", mk_arrow(Nat, Nat)) -- In the following inductive datatype, {l} is the list of universe level parameters. -- 1 is the number of parameters. -- The Propean true in {A, U_l, true} is marking that this argument is implicit. env = add_inductive(env, "list", {l}, 1, Pi(A, U_l1), "nil", Pi(A, list_l(A)), "cons", Pi(A, mk_arrow(A, list_l(A), list_l(A)))) env = add_inductive(env, "vec", {l}, 1, Pi(A, n, U_l1), "vnil", Pi(A, vec_l(A, zero)), "vcons", Pi(A, n, mk_arrow(A, vec_l(A, n), vec_l(A, succ(n))))) local And = Const("and") local Or = Const("or") -- Datatype without introduction rules (aka constructors). It is a uninhabited type. env = add_inductive(env, "false", Prop) -- Datatype with a single constructor. env = add_inductive(env, "true", Prop, "trivial", Const("true")) local A = Local("A", Prop) local B = Local("B", Prop) env = add_inductive(env, "and", 2, Pi(A, B, Prop), "and_intro", Pi(A, B, mk_arrow(A, B, And(A, B)))) env = add_inductive(env, "or", 2, Pi(A, B, Prop), "or_intro_left", Pi(A, B, mk_arrow(A, Or(A, B))), "or_intro_right", Pi(A, B, mk_arrow(B, Or(A, B)))) local A = Local("A", U_l) local P = Local("P", mk_arrow(A, Prop)) local a = Local("a", A) local exists_l = Const("exists", {l}) env = add_inductive(env, "exists", {l}, 2, Pi(A, P, Prop), "exists_intro", Pi(A, P, a, mk_arrow(P(a), exists_l(A, P)))) env = add_inductive(env, {l}, 1, {"tree", Pi(A, U_l1), "node", Pi(A, mk_arrow(A, forest_l(A), tree_l(A))) }, {"forest", Pi(A, U_l1), "emptyf", Pi(A, forest_l(A)), "consf", Pi(A, mk_arrow(tree_l(A), forest_l(A), forest_l(A)))}) local tc = type_checker(env) display_type(env, Const("forest", {0})) display_type(env, Const("vcons", {0})) display_type(env, Const("consf", {0})) display_type(env, Const("forest_rec", {v, u})) display_type(env, Const("nat_rec", {v})) display_type(env, Const("or_rec")) local Even = Const("Even") local Odd = Const("Odd") local b = Local("b", Nat) env = add_inductive(env, {}, {"Even", mk_arrow(Nat, Prop), "zero_is_even", Even(zero), "succ_odd", Pi(b, mk_arrow(Odd(b), Even(succ(b))))}, {"Odd", mk_arrow(Nat, Prop), "succ_even", Pi(b, mk_arrow(Even(b), Odd(succ(b))))}) local flist_l = Const("flist", {l}) env = add_inductive(env, "flist", {l}, 1, Pi(A, U_l1), "fnil", Pi(A, flist_l(A)), "fcons", Pi(A, mk_arrow(mk_arrow(Nat, A), mk_arrow(Nat, Prop, flist_l(A)), flist_l(A)))) local eq_l = Const("eq", {l}) local A = Local("A", U_l) local a = Local("a", A) local b = Local("b", A) env = add_inductive(env, "eq", {l}, 2, Pi(A, a, b, Prop), "refl", Pi(A, a, eq_l(A, a, a))) display_type(env, Const("eq_rec", {v, u})) display_type(env, Const("exists_rec", {u})) display_type(env, Const("list_rec", {v, u})) display_type(env, Const("Even_rec")) display_type(env, Const("Odd_rec")) display_type(env, Const("and_rec", {v})) display_type(env, Const("vec_rec", {v, u})) display_type(env, Const("flist_rec", {v, u})) local nat_rec1 = Const("nat_rec", {1}) local a = Local("a", Nat) local b = Local("b", Nat) local n = Local("n", Nat) local c = Local("c", Nat) local add = Fun(a, b, nat_rec1(mk_lambda("_", Nat, Nat), b, Fun(n, c, succ(c)), a)) display_type(env, add) local tc = type_checker(env) assert(tc:is_def_eq(add(succ(succ(zero)), succ(zero)), succ(succ(succ(zero))))) assert(tc:is_def_eq(add(succ(succ(succ(zero))), succ(succ(zero))), succ(succ(succ(succ(succ(zero))))))) local list_nat = Const("list", {1})(Nat) local list_nat_rec1 = Const("list_rec", {1, 1})(Nat) display_type(env, list_nat_rec1) local h = Local("h", Nat) local t = Local("t", list_nat) local c = Local("c", Nat) local lst = Local("lst", list_nat) local length = Fun(lst, list_nat_rec1(mk_lambda("_", list_nat, Nat), zero, Fun(h, t, c, succ(c)), lst)) local nil_nat = Const("nil", {1})(Nat) local cons_nat = Const("cons", {1})(Nat) print(tc:whnf(length(nil_nat))) assert(tc:is_def_eq(length(nil_nat), zero)) assert(tc:is_def_eq(length(cons_nat(zero, nil_nat)), succ(zero))) assert(tc:is_def_eq(length(cons_nat(zero, cons_nat(zero, nil_nat))), succ(succ(zero)))) env:export("ind1_mod.olean") local env2 = import_modules("ind1_mod") local tc = type_checker(env2) assert(tc:is_def_eq(length(nil_nat), zero)) assert(tc:is_def_eq(length(cons_nat(zero, nil_nat)), succ(zero))) assert(tc:is_def_eq(length(cons_nat(zero, cons_nat(zero, nil_nat))), succ(succ(zero)))) -- Martin-Lof style identity type local env = hott_environment() local Id_l = Const("Id", {l}) local A = Local("A", U_l) local a = Local("a", A) local b = Local("b", A) env = env:add_universe("u") env = env:add_universe("v") env = add_inductive(env, "Id", {l}, 1, Pi(A, a, b, U_l), "Id_refl", Pi(A, b, Id_l(A, b, b))) display_type(env, Const("Id_rec", {v, u}))