/* Copyright (c) 2013 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura */ #pragma once #include "expr.h" namespace lean { /** \brief Return unit if num_args == 0<\tt>, args[0] if num_args == 1<\tt>, and (op args[0] (op args[1] (op ... )))<\tt> */ expr mk_bin_op(expr const & op, expr const & unit, unsigned num_args, expr const * args); expr mk_bin_op(expr const & op, expr const & unit, std::initializer_list const & l); /** \brief Return (Type m) m >= bottom + Offset */ expr mk_type_m(); #define TypeM mk_type_m() /** \brief Return (Type u) u >= m + Offset */ expr mk_type_u(); #define TypeU mk_type_u() /** \brief Return the Lean Boolean type. */ expr mk_bool_type(); #define Bool mk_bool_type() /** \brief Return true iff \c e is the Lean Boolean type. */ bool is_bool_type(expr const & e); /** \brief Create a Lean Boolean value (true/false) */ expr mk_bool_value(bool v); #define True mk_bool_value(true) #define False mk_bool_value(false) /** \brief Return true iff \c e is a Lean Boolean value. */ bool is_bool_value(expr const & e); /** \brief Convert a Lean Boolean value into a C++ Boolean value. \pre is_bool_value(e) */ bool to_bool(expr const & e); /** \brief Return true iff \c e is the Lean true value. */ bool is_true(expr const & e); /** \brief Return true iff \c e is the Lean false value. */ bool is_false(expr const & e); /** \brief Return the Lean If-Then-Else operator. It has type: pi (A : Type), bool -> A -> A -> A */ expr mk_if_fn(); /** \brief Return true iff \c e is the Lean If-Then-Else operator */ bool is_if_fn(expr const & e); /** \brief Return the term (if A c t e) */ inline expr mk_if(expr const & A, expr const & c, expr const & t, expr const & e) { return mk_app(mk_if_fn(), A, c, t, e); } inline expr If(expr const & A, expr const & c, expr const & t, expr const & e) { return mk_if(A, c, t, e); } /** \brief Return the term (if bool c t e) */ inline expr mk_bool_if(expr const & c, expr const & t, expr const & e) { return mk_if(mk_bool_type(), c, t, e); } inline expr bIf(expr const & c, expr const & t, expr const & e) { return mk_bool_if(c, t, e); } /** \brief Return the Lean and operator */ expr mk_and_fn(); /** \brief Return true iff \c e is the Lean and operator. */ bool is_and_fn(expr const & e); /** \brief Return (and e1 e2) */ inline expr mk_and(expr const & e1, expr const & e2) { return mk_app(mk_and_fn(), e1, e2); } inline expr mk_and(unsigned num_args, expr const * args) { return mk_bin_op(mk_and_fn(), True, num_args, args); } inline expr And(expr const & e1, expr const & e2) { return mk_and(e1, e2); } inline expr And(std::initializer_list const & l) { return mk_and(l.size(), l.begin()); } /** \brief Return the Lean or operator */ expr mk_or_fn(); bool is_or_fn(expr const & e); /** \brief Return (or e1 e2) */ inline expr mk_or(expr const & e1, expr const & e2) { return mk_app(mk_or_fn(), e1, e2); } inline expr mk_or(unsigned num_args, expr const * args) { return mk_bin_op(mk_or_fn(), False, num_args, args); } inline expr Or(expr const & e1, expr const & e2) { return mk_or(e1, e2); } inline expr Or(std::initializer_list const & l) { return mk_or(l.size(), l.begin()); } /** \brief Return the Lean not operator */ expr mk_not_fn(); bool is_not_fn(expr const & e); /** \brief Return (not e) */ inline expr mk_not(expr const & e) { return mk_app(mk_not_fn(), e); } inline expr Not(expr const & e) { return mk_not(e); } /** \brief Return the Lean forall operator. It has type: Pi (A : Type), (A -> bool) -> Bool<\tt> */ expr mk_forall_fn(); /** \brief Return true iff \c e is the Lean forall operator */ bool is_forall_fn(expr const & e); /** \brief Return the term (forall A P), where A is a type and P : A -> bool */ inline expr mk_forall(expr const & A, expr const & P) { return mk_app(mk_forall_fn(), A, P); } inline expr Forall(expr const & A, expr const & P) { return mk_forall(A, P); } /** \brief Return the Lean exists operator. It has type: Pi (A : Type), (A -> Bool) -> Bool<\tt> */ expr mk_exists_fn(); /** \brief Return true iff \c e is the Lean exists operator */ bool is_exists_fn(expr const & e); /** \brief Return the term (exists A P), where A is a type and P : A -> bool */ inline expr mk_exists(expr const & A, expr const & P) { return mk_app(mk_exists_fn(), A, P); } inline expr Exists(expr const & A, expr const & P) { return mk_exists(A, P); } expr mk_refl_fn(); bool is_refl_fn(expr const & e); inline expr Refl(expr const & A, expr const & a) { return mk_app(mk_refl_fn(), A, a); } expr mk_subst_fn(); bool is_subst_fn(expr const & e); inline expr Subst(expr const & A, expr const & P, expr const & a, expr const & b, expr const & H1, expr const & H2) { return mk_app({mk_subst_fn(), A, P, a, b, H1, H2}); } expr mk_symm_fn(); bool is_symm_fn(expr const & e); expr mk_trans_fn(); bool is_trans_fn(expr const & e); expr mk_congr_fn(); bool is_congr_fn(expr const & e); expr mk_ext_fn(); bool is_ext_fn(expr const & e); expr mk_foralle_fn(); bool is_foralle_fn(expr const & e); expr mk_foralli_fn(); bool is_foralli_fn(expr const & e); expr mk_domain_inj_fn(); bool is_domain_inj_fn(expr const & e); expr mk_range_inj_fn(); bool is_range_inj_fn(expr const & e); class environment; /** \brief Initialize the environment with basic builtin declarations and axioms */ void add_basic_theory(environment & env); /** \brief Helper macro for defining constants such as bool_type, int_type, int_add, etc. */ #define MK_BUILTIN(Name, ClassName) \ expr mk_##Name() { \ static thread_local expr r = mk_value(*(new ClassName())); \ return r; \ } \ bool is_##Name(expr const & e) { \ return is_value(e) && to_value(e).kind() == ClassName::g_kind; \ } /** \brief Helper macro for generating "defined" constants. */ #define MK_CONSTANT(Name, NameObj) \ static name Name ## _name = NameObj; \ expr mk_##Name() { \ static thread_local expr r = mk_constant(Name ## _name); \ return r ; \ } \ bool is_##Name(expr const & e) { \ return is_constant(e) && const_name(e) == Name ## _name; \ } }