/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura, Floris van Doorn -/ prelude import init.reserved_notation open unit /- not -/ definition not [reducible] (a : Type) := a → empty prefix ¬ := not definition absurd {a b : Type} (H₁ : a) (H₂ : ¬a) : b := empty.rec (λ e, b) (H₂ H₁) definition mt {a b : Type} (H₁ : a → b) (H₂ : ¬b) : ¬a := assume Ha : a, absurd (H₁ Ha) H₂ protected definition not_empty : ¬ empty := assume H : empty, H definition not_not_intro {a : Type} (Ha : a) : ¬¬a := assume Hna : ¬a, absurd Ha Hna theorem not_of_not_not_not {a : Type} (H : ¬¬¬a) : ¬a := λ Ha, absurd (not_not_intro Ha) H definition not.elim {a : Type} (H₁ : ¬a) (H₂ : a) : empty := H₁ H₂ definition not.intro {a : Type} (H : a → empty) : ¬a := H definition not_not_of_not_implies {a b : Type} (H : ¬(a → b)) : ¬¬a := assume Hna : ¬a, absurd (assume Ha : a, absurd Ha Hna) H definition not_of_not_implies {a b : Type} (H : ¬(a → b)) : ¬b := assume Hb : b, absurd (assume Ha : a, Hb) H /- eq -/ infix = := eq definition rfl {A : Type} {a : A} := eq.refl a namespace eq variables {A : Type} {a b c : A} definition subst [unfold 5] {P : A → Type} (H₁ : a = b) (H₂ : P a) : P b := eq.rec H₂ H₁ definition trans [unfold 5] (H₁ : a = b) (H₂ : b = c) : a = c := subst H₂ H₁ definition symm [unfold 4] (H : a = b) : b = a := subst H (refl a) theorem mp {a b : Type} : (a = b) → a → b := eq.rec_on theorem mpr {a b : Type} : (a = b) → b → a := assume H₁ H₂, eq.rec_on (eq.symm H₁) H₂ namespace ops postfix ⁻¹ := symm --input with \sy or \-1 or \inv infixl ⬝ := trans infixr ▸ := subst end ops end eq -- Auxiliary definition used by automation. It has the same type of eq.rec in the standard library definition eq.nrec.{l₁ l₂} {A : Type.{l₂}} {a : A} {C : A → Type.{l₁}} (H₁ : C a) (b : A) (H₂ : a = b) : C b := eq.rec H₁ H₂ definition congr {A B : Type} {f₁ f₂ : A → B} {a₁ a₂ : A} (H₁ : f₁ = f₂) (H₂ : a₁ = a₂) : f₁ a₁ = f₂ a₂ := eq.subst H₁ (eq.subst H₂ rfl) theorem congr_fun {A : Type} {B : A → Type} {f g : Π x, B x} (H : f = g) (a : A) : f a = g a := eq.subst H (eq.refl (f a)) theorem congr_arg {A B : Type} (a a' : A) (f : A → B) (Ha : a = a') : f a = f a' := eq.subst Ha rfl theorem congr_arg2 {A B C : Type} (a a' : A) (b b' : B) (f : A → B → C) (Ha : a = a') (Hb : b = b') : f a b = f a' b' := eq.subst Ha (eq.subst Hb rfl) section variables {A : Type} {a b c: A} open eq.ops definition trans_rel_left (R : A → A → Type) (H₁ : R a b) (H₂ : b = c) : R a c := H₂ ▸ H₁ definition trans_rel_right (R : A → A → Type) (H₁ : a = b) (H₂ : R b c) : R a c := H₁⁻¹ ▸ H₂ end attribute eq.subst [subst] attribute eq.refl [refl] attribute eq.trans [trans] attribute eq.symm [symm] namespace lift definition down_up.{l₁ l₂} {A : Type.{l₁}} (a : A) : down (up.{l₁ l₂} a) = a := rfl definition up_down.{l₁ l₂} {A : Type.{l₁}} (a : lift.{l₁ l₂} A) : up (down a) = a := lift.rec_on a (λ d, rfl) end lift /- ne -/ definition ne {A : Type} (a b : A) := ¬(a = b) infix ≠ := ne namespace ne open eq.ops variable {A : Type} variables {a b : A} definition intro : (a = b → empty) → a ≠ b := assume H, H definition elim : a ≠ b → a = b → empty := assume H₁ H₂, H₁ H₂ definition irrefl : a ≠ a → empty := assume H, H rfl definition symm : a ≠ b → b ≠ a := assume (H : a ≠ b) (H₁ : b = a), H H₁⁻¹ end ne section open eq.ops variables {A : Type} {a b c : A} definition empty.of_ne : a ≠ a → empty := assume H, H rfl definition ne.of_eq_of_ne : a = b → b ≠ c → a ≠ c := assume H₁ H₂, H₁⁻¹ ▸ H₂ definition ne.of_ne_of_eq : a ≠ b → b = c → a ≠ c := assume H₁ H₂, H₂ ▸ H₁ end /- iff -/ definition iff (a b : Type) := prod (a → b) (b → a) infix <-> := iff infix ↔ := iff variables {a b c : Type} namespace iff definition def : (a ↔ b) = (prod (a → b) (b → a)) := rfl definition intro (H₁ : a → b) (H₂ : b → a) : a ↔ b := prod.mk H₁ H₂ definition elim (H₁ : (a → b) → (b → a) → c) (H₂ : a ↔ b) : c := prod.rec H₁ H₂ definition elim_left (H : a ↔ b) : a → b := elim (assume H₁ H₂, H₁) H definition mp := @elim_left definition elim_right (H : a ↔ b) : b → a := elim (assume H₁ H₂, H₂) H definition mpr := @elim_right definition flip_sign (H₁ : a ↔ b) : ¬a ↔ ¬b := intro (assume Hna, mt (elim_right H₁) Hna) (assume Hnb, mt (elim_left H₁) Hnb) definition refl (a : Type) : a ↔ a := intro (assume H, H) (assume H, H) definition rfl {a : Type} : a ↔ a := refl a definition iff_of_eq (a b : Type) (p : a = b) : a ↔ b := eq.rec rfl p definition trans (H₁ : a ↔ b) (H₂ : b ↔ c) : a ↔ c := intro (assume Ha, elim_left H₂ (elim_left H₁ Ha)) (assume Hc, elim_right H₁ (elim_right H₂ Hc)) definition symm (H : a ↔ b) : b ↔ a := intro (assume Hb, elim_right H Hb) (assume Ha, elim_left H Ha) definition unit_elim (H : a ↔ unit) : a := mp (symm H) unit.star definition empty_elim (H : a ↔ empty) : ¬a := assume Ha : a, mp H Ha open eq.ops definition of_eq {a b : Type} (H : a = b) : a ↔ b := iff.intro (λ Ha, H ▸ Ha) (λ Hb, H⁻¹ ▸ Hb) definition pi_iff_pi {A : Type} {P Q : A → Type} (H : Πa, (P a ↔ Q a)) : (Πa, P a) ↔ Πa, Q a := iff.intro (λp a, iff.elim_left (H a) (p a)) (λq a, iff.elim_right (H a) (q a)) theorem imp_iff {P : Type} (Q : Type) (p : P) : (P → Q) ↔ Q := iff.intro (λf, f p) (λq p, q) end iff theorem not_iff_not_of_iff (H₁ : a ↔ b) : ¬a ↔ ¬b := iff.intro (assume (Hna : ¬ a) (Hb : b), Hna (iff.elim_right H₁ Hb)) (assume (Hnb : ¬ b) (Ha : a), Hnb (iff.elim_left H₁ Ha)) theorem of_iff_unit (H : a ↔ unit) : a := iff.mp (iff.symm H) star theorem not_of_iff_empty : (a ↔ empty) → ¬a := iff.mp theorem iff_unit_intro (H : a) : a ↔ unit := iff.intro (λ Hl, star) (λ Hr, H) theorem iff_empty_intro (H : ¬a) : a ↔ empty := iff.intro H (empty.rec _) theorem not_non_contradictory_iff_absurd (a : Type) : ¬¬¬a ↔ ¬a := iff.intro (λ (Hl : ¬¬¬a) (Ha : a), Hl (λf, f Ha)) absurd attribute iff.refl [refl] attribute iff.trans [trans] attribute iff.symm [symm] /- inhabited -/ inductive inhabited [class] (A : Type) : Type := mk : A → inhabited A namespace inhabited protected definition destruct {A : Type} {B : Type} (H1 : inhabited A) (H2 : A → B) : B := inhabited.rec H2 H1 definition inhabited_fun [instance] (A : Type) {B : Type} [H : inhabited B] : inhabited (A → B) := inhabited.destruct H (λb, mk (λa, b)) definition inhabited_Pi [instance] (A : Type) {B : A → Type} [H : Πx, inhabited (B x)] : inhabited (Πx, B x) := mk (λa, inhabited.destruct (H a) (λb, b)) definition default (A : Type) [H : inhabited A] : A := inhabited.destruct H (take a, a) end inhabited /- decidable -/ inductive decidable.{l} [class] (p : Type.{l}) : Type.{l} := | inl : p → decidable p | inr : ¬p → decidable p namespace decidable variables {p q : Type} definition pos_witness [C : decidable p] (H : p) : p := decidable.rec_on C (λ Hp, Hp) (λ Hnp, absurd H Hnp) definition neg_witness [C : decidable p] (H : ¬ p) : ¬ p := decidable.rec_on C (λ Hp, absurd Hp H) (λ Hnp, Hnp) definition by_cases {q : Type} [C : decidable p] (Hpq : p → q) (Hnpq : ¬p → q) : q := decidable.rec_on C (assume Hp, Hpq Hp) (assume Hnp, Hnpq Hnp) definition em (p : Type) [H : decidable p] : sum p ¬p := by_cases (λ Hp, sum.inl Hp) (λ Hnp, sum.inr Hnp) definition by_contradiction [Hp : decidable p] (H : ¬p → empty) : p := by_cases (assume H₁ : p, H₁) (assume H₁ : ¬p, empty.rec (λ e, p) (H H₁)) definition decidable_iff_equiv (Hp : decidable p) (H : p ↔ q) : decidable q := decidable.rec_on Hp (assume Hp : p, inl (iff.elim_left H Hp)) (assume Hnp : ¬p, inr (iff.elim_left (iff.flip_sign H) Hnp)) definition decidable_eq_equiv.{l} {p q : Type.{l}} (Hp : decidable p) (H : p = q) : decidable q := decidable_iff_equiv Hp (iff.of_eq H) end decidable section variables {p q : Type} open decidable (rec_on inl inr) definition decidable_unit [instance] : decidable unit := inl unit.star definition decidable_empty [instance] : decidable empty := inr not_empty definition decidable_prod [instance] [Hp : decidable p] [Hq : decidable q] : decidable (prod p q) := rec_on Hp (assume Hp : p, rec_on Hq (assume Hq : q, inl (prod.mk Hp Hq)) (assume Hnq : ¬q, inr (λ H : prod p q, prod.rec_on H (λ Hp Hq, absurd Hq Hnq)))) (assume Hnp : ¬p, inr (λ H : prod p q, prod.rec_on H (λ Hp Hq, absurd Hp Hnp))) definition decidable_sum [instance] [Hp : decidable p] [Hq : decidable q] : decidable (sum p q) := rec_on Hp (assume Hp : p, inl (sum.inl Hp)) (assume Hnp : ¬p, rec_on Hq (assume Hq : q, inl (sum.inr Hq)) (assume Hnq : ¬q, inr (λ H : sum p q, sum.rec_on H (λ Hp, absurd Hp Hnp) (λ Hq, absurd Hq Hnq)))) definition decidable_not [instance] [Hp : decidable p] : decidable (¬p) := rec_on Hp (assume Hp, inr (not_not_intro Hp)) (assume Hnp, inl Hnp) definition decidable_implies [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p → q) := rec_on Hp (assume Hp : p, rec_on Hq (assume Hq : q, inl (assume H, Hq)) (assume Hnq : ¬q, inr (assume H : p → q, absurd (H Hp) Hnq))) (assume Hnp : ¬p, inl (assume Hp, absurd Hp Hnp)) definition decidable_if [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p ↔ q) := show decidable (prod (p → q) (q → p)), from _ end definition decidable_pred [reducible] {A : Type} (R : A → Type) := Π (a : A), decidable (R a) definition decidable_rel [reducible] {A : Type} (R : A → A → Type) := Π (a b : A), decidable (R a b) definition decidable_eq [reducible] (A : Type) := decidable_rel (@eq A) definition decidable_ne [instance] {A : Type} [H : decidable_eq A] : decidable_rel (@ne A) := show Π x y : A, decidable (x = y → empty), from _ definition ite (c : Type) [H : decidable c] {A : Type} (t e : A) : A := decidable.rec_on H (λ Hc, t) (λ Hnc, e) definition if_pos {c : Type} [H : decidable c] (Hc : c) {A : Type} {t e : A} : (if c then t else e) = t := decidable.rec (λ Hc : c, eq.refl (@ite c (decidable.inl Hc) A t e)) (λ Hnc : ¬c, absurd Hc Hnc) H definition if_neg {c : Type} [H : decidable c] (Hnc : ¬c) {A : Type} {t e : A} : (if c then t else e) = e := decidable.rec (λ Hc : c, absurd Hc Hnc) (λ Hnc : ¬c, eq.refl (@ite c (decidable.inr Hnc) A t e)) H definition if_t_t (c : Type) [H : decidable c] {A : Type} (t : A) : (if c then t else t) = t := decidable.rec (λ Hc : c, eq.refl (@ite c (decidable.inl Hc) A t t)) (λ Hnc : ¬c, eq.refl (@ite c (decidable.inr Hnc) A t t)) H definition if_unit {A : Type} (t e : A) : (if unit then t else e) = t := if_pos unit.star definition if_empty {A : Type} (t e : A) : (if empty then t else e) = e := if_neg not_empty section open eq.ops definition if_cond_congr {c₁ c₂ : Type} [H₁ : decidable c₁] [H₂ : decidable c₂] (Heq : c₁ ↔ c₂) {A : Type} (t e : A) : (if c₁ then t else e) = (if c₂ then t else e) := decidable.rec_on H₁ (λ Hc₁ : c₁, decidable.rec_on H₂ (λ Hc₂ : c₂, if_pos Hc₁ ⬝ (if_pos Hc₂)⁻¹) (λ Hnc₂ : ¬c₂, absurd (iff.elim_left Heq Hc₁) Hnc₂)) (λ Hnc₁ : ¬c₁, decidable.rec_on H₂ (λ Hc₂ : c₂, absurd (iff.elim_right Heq Hc₂) Hnc₁) (λ Hnc₂ : ¬c₂, if_neg Hnc₁ ⬝ (if_neg Hnc₂)⁻¹)) definition if_congr_aux {c₁ c₂ : Type} [H₁ : decidable c₁] [H₂ : decidable c₂] {A : Type} {t₁ t₂ e₁ e₂ : A} (Hc : c₁ ↔ c₂) (Ht : t₁ = t₂) (He : e₁ = e₂) : (if c₁ then t₁ else e₁) = (if c₂ then t₂ else e₂) := Ht ▸ He ▸ (if_cond_congr Hc t₁ e₁) definition if_congr {c₁ c₂ : Type} [H₁ : decidable c₁] {A : Type} {t₁ t₂ e₁ e₂ : A} (Hc : c₁ ↔ c₂) (Ht : t₁ = t₂) (He : e₁ = e₂) : (if c₁ then t₁ else e₁) = (@ite c₂ (decidable.decidable_iff_equiv H₁ Hc) A t₂ e₂) := have H2 [visible] : decidable c₂, from (decidable.decidable_iff_equiv H₁ Hc), if_congr_aux Hc Ht He theorem implies_of_if_pos {c t e : Type} [H : decidable c] (h : if c then t else e) : c → t := assume Hc, eq.rec_on (if_pos Hc) h theorem implies_of_if_neg {c t e : Type} [H : decidable c] (h : if c then t else e) : ¬c → e := assume Hnc, eq.rec_on (if_neg Hnc) h -- We use "dependent" if-then-else to be able to communicate the if-then-else condition -- to the branches definition dite (c : Type) [H : decidable c] {A : Type} (t : c → A) (e : ¬ c → A) : A := decidable.rec_on H (λ Hc, t Hc) (λ Hnc, e Hnc) definition dif_pos {c : Type} [H : decidable c] (Hc : c) {A : Type} {t : c → A} {e : ¬ c → A} : (if H : c then t H else e H) = t (decidable.pos_witness Hc) := decidable.rec (λ Hc : c, eq.refl (@dite c (decidable.inl Hc) A t e)) (λ Hnc : ¬c, absurd Hc Hnc) H definition dif_neg {c : Type} [H : decidable c] (Hnc : ¬c) {A : Type} {t : c → A} {e : ¬ c → A} : (if H : c then t H else e H) = e (decidable.neg_witness Hnc) := decidable.rec (λ Hc : c, absurd Hc Hnc) (λ Hnc : ¬c, eq.refl (@dite c (decidable.inr Hnc) A t e)) H -- Remark: dite and ite are "definitionally equal" when we ignore the proofs. definition dite_ite_eq (c : Type) [H : decidable c] {A : Type} (t : A) (e : A) : dite c (λh, t) (λh, e) = ite c t e := rfl end open eq.ops unit definition is_unit (c : Type) [H : decidable c] : Type₀ := if c then unit else empty definition is_empty (c : Type) [H : decidable c] : Type₀ := if c then empty else unit theorem of_is_unit {c : Type} [H₁ : decidable c] (H₂ : is_unit c) : c := decidable.rec_on H₁ (λ Hc, Hc) (λ Hnc, empty.rec _ (if_neg Hnc ▸ H₂)) notation `dec_trivial` := of_is_unit star theorem not_of_not_is_unit {c : Type} [H₁ : decidable c] (H₂ : ¬ is_unit c) : ¬ c := decidable.rec_on H₁ (λ Hc, absurd star (if_pos Hc ▸ H₂)) (λ Hnc, Hnc) theorem not_of_is_empty {c : Type} [H₁ : decidable c] (H₂ : is_empty c) : ¬ c := decidable.rec_on H₁ (λ Hc, empty.rec _ (if_pos Hc ▸ H₂)) (λ Hnc, Hnc) theorem of_not_is_empty {c : Type} [H₁ : decidable c] (H₂ : ¬ is_empty c) : c := decidable.rec_on H₁ (λ Hc, Hc) (λ Hnc, absurd star (if_neg Hnc ▸ H₂))