/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura -/ prelude import init.relation init.tactic inductive acc.{l₁ l₂} {A : Type.{l₁}} (R : A → A → Type.{l₂}) : A → Type.{max l₁ l₂} := intro : ∀x, (∀ y, R y x → acc R y) → acc R x namespace acc variables {A : Type} {R : A → A → Type} definition inv {x y : A} (H₁ : acc R x) (H₂ : R y x) : acc R y := acc.rec_on H₁ (λ x₁ ac₁ iH H₂, ac₁ y H₂) H₂ end acc inductive well_founded [class] {A : Type} (R : A → A → Type) : Type := intro : (∀ a, acc R a) → well_founded R namespace well_founded definition apply [coercion] {A : Type} {R : A → A → Type} (wf : well_founded R) : ∀a, acc R a := take a, well_founded.rec_on wf (λp, p) a section parameters {A : Type} {R : A → A → Type} local infix `≺`:50 := R hypothesis [Hwf : well_founded R] definition recursion {C : A → Type} (a : A) (H : Πx, (Πy, y ≺ x → C y) → C x) : C a := acc.rec_on (Hwf a) (λ x₁ ac₁ iH, H x₁ iH) definition induction {C : A → Type} (a : A) (H : ∀x, (∀y, y ≺ x → C y) → C x) : C a := recursion a H parameter {C : A → Type} parameter F : Πx, (Πy, y ≺ x → C y) → C x definition fix_F (x : A) (a : acc R x) : C x := acc.rec_on a (λ x₁ ac₁ iH, F x₁ iH) definition fix_F_eq (x : A) (r : acc R x) : fix_F x r = F x (λ (y : A) (p : y ≺ x), fix_F y (acc.inv r p)) := acc.rec_on r (λ x H ih, rfl) -- Remark: after we prove function extensionality from univalence, we can drop this hypothesis hypothesis F_ext : Π (x : A) (f g : Π y, y ≺ x → C y), (Π (y : A) (p : y ≺ x), f y p = g y p) → F x f = F x g lemma fix_F_inv (x : A) (r : acc R x) : Π (s : acc R x), fix_F x r = fix_F x s := acc.rec_on r (λ (x₁ : A) (h₁ : Π y, y ≺ x₁ → acc R y) (ih₁ : Π y (hlt : y ≺ x₁) (s : acc R y), fix_F y (h₁ y hlt) = fix_F y s) (s : acc R x₁), have aux₁ : Π (s : acc R x₁) (h₁ : Π y, y ≺ x₁ → acc R y) (ih₁ : Π y (hlt : y ≺ x₁) (s : acc R y), fix_F y (h₁ y hlt) = fix_F y s), fix_F x₁ (acc.intro x₁ h₁) = fix_F x₁ s, from λ s, acc.rec_on s (λ (x₂ : A) (h₂ : Π y, y ≺ x₂ → acc R y) (ih₂ : _) (h₁ : Π y, y ≺ x₂ → acc R y) (ih₁ : Π y (hlt : y ≺ x₂) (s : acc R y), fix_F y (h₁ y hlt) = fix_F y s), calc fix_F x₂ (acc.intro x₂ h₁) = F x₂ (λ (y : A) (p : y ≺ x₂), fix_F y (h₁ y p)) : rfl ... = F x₂ (λ (y : A) (p : y ≺ x₂), fix_F y (h₂ y p)) : F_ext x₂ _ _ (λ (y : A) (p : y ≺ x₂), ih₁ y p (h₂ y p)) ... = fix_F x₂ (acc.intro x₂ h₂) : rfl), show fix_F x₁ (acc.intro x₁ h₁) = fix_F x₁ s, from aux₁ s h₁ ih₁) -- Well-founded fixpoint definition fix (x : A) : C x := fix_F x (Hwf x) -- Well-founded fixpoint satisfies fixpoint equation definition fix_eq (x : A) : fix x = F x (λy h, fix y) := calc fix x = fix_F x (Hwf x) : rfl ... = F x (λy h, fix_F y (acc.inv (Hwf x) h)) : fix_F_eq x (Hwf x) ... = F x (λy h, fix_F y (Hwf y)) : F_ext x _ _ (λ y h, fix_F_inv y _ _) ... = F x (λy h, fix y) : rfl end end well_founded open well_founded -- Empty relation is well-founded definition empty.wf {A : Type} : well_founded empty_relation := well_founded.intro (λ (a : A), acc.intro a (λ (b : A) (lt : empty), empty.rec _ lt)) -- Subrelation of a well-founded relation is well-founded namespace subrelation section parameters {A : Type} {R Q : A → A → Type} parameters (H₁ : subrelation Q R) parameters (H₂ : well_founded R) definition accessible {a : A} (ac : acc R a) : acc Q a := acc.rec_on ac (λ (x : A) (ax : _) (iH : ∀ (y : A), R y x → acc Q y), acc.intro x (λ (y : A) (lt : Q y x), iH y (H₁ lt))) definition wf : well_founded Q := well_founded.intro (λ a, accessible (H₂ a)) end end subrelation -- The inverse image of a well-founded relation is well-founded namespace inv_image section parameters {A B : Type} {R : B → B → Type} parameters (f : A → B) parameters (H : well_founded R) definition accessible {a : A} (ac : acc R (f a)) : acc (inv_image R f) a := have gen : ∀x, f x = f a → acc (inv_image R f) x, from acc.rec_on ac (λx acx (iH : ∀y, R y x → (∀z, f z = y → acc (inv_image R f) z)) (z : A) (eq₁ : f z = x), acc.intro z (λ (y : A) (lt : R (f y) (f z)), iH (f y) (eq.rec_on eq₁ lt) y rfl)), gen a rfl definition wf : well_founded (inv_image R f) := well_founded.intro (λ a, accessible (H (f a))) end end inv_image -- The transitive closure of a well-founded relation is well-founded namespace tc section parameters {A : Type} {R : A → A → Type} local notation `R⁺` := tc R definition accessible {z} (ac: acc R z) : acc R⁺ z := acc.rec_on ac (λ x acx (iH : ∀y, R y x → acc R⁺ y), acc.intro x (λ (y : A) (lt : R⁺ y x), have gen : x = x → acc R⁺ y, from tc.rec_on lt (λa b (H : R a b) (Heq : b = x), iH a (eq.rec_on Heq H)) (λa b c (H₁ : R⁺ a b) (H₂ : R⁺ b c) (iH₁ : b = x → acc R⁺ a) (iH₂ : c = x → acc R⁺ b) (Heq : c = x), acc.inv (iH₂ Heq) H₁), gen rfl)) definition wf (H : well_founded R) : well_founded R⁺ := well_founded.intro (λ a, accessible (H a)) end end tc