/- Copyright (c) 2014 Robert Lewis. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Robert Lewis Structures with multiplicative and additive components, including division rings and fields. The development is modeled after Isabelle's library. -/ import logic.eq logic.connectives data.unit data.sigma data.prod import algebra.binary algebra.group algebra.ring open eq eq.ops variable {A : Type} structure division_ring [class] (A : Type) extends ring A, has_inv A, zero_ne_one_class A := (mul_inv_cancel : ∀{a}, a ≠ zero → mul a (inv a) = one) (inv_mul_cancel : ∀{a}, a ≠ zero → mul (inv a) a = one) section division_ring variables [s : division_ring A] {a b c : A} include s protected definition algebra.div (a b : A) : A := a * b⁻¹ definition division_ring_has_div [instance] : has_div A := has_div.mk algebra.div lemma division.def [simp] (a b : A) : a / b = a * b⁻¹ := rfl theorem mul_inv_cancel [simp] (H : a ≠ 0) : a * a⁻¹ = 1 := division_ring.mul_inv_cancel H theorem inv_mul_cancel [simp] (H : a ≠ 0) : a⁻¹ * a = 1 := division_ring.inv_mul_cancel H theorem inv_eq_one_div (a : A) : a⁻¹ = 1 / a := !one_mul⁻¹ theorem div_eq_mul_one_div (a b : A) : a / b = a * (1 / b) := by simp theorem mul_one_div_cancel [simp] (H : a ≠ 0) : a * (1 / a) = 1 := by simp theorem one_div_mul_cancel [simp] (H : a ≠ 0) : (1 / a) * a = 1 := by simp theorem div_self [simp] (H : a ≠ 0) : a / a = 1 := by simp theorem one_div_one [simp] : 1 / 1 = (1:A) := div_self (ne.symm zero_ne_one) theorem mul_div_assoc (a b : A) : (a * b) / c = a * (b / c) := by simp theorem one_div_ne_zero (H : a ≠ 0) : 1 / a ≠ 0 := assume H2 : 1 / a = 0, have C1 : 0 = (1:A), from symm (by rewrite [-(mul_one_div_cancel H), H2, mul_zero]), absurd C1 zero_ne_one theorem one_inv_eq [simp] : 1⁻¹ = (1:A) := by rewrite [-mul_one ((1:A)⁻¹), inv_mul_cancel (ne.symm (@zero_ne_one A _))] theorem div_one [simp] (a : A) : a / 1 = a := by simp theorem zero_div [simp] (a : A) : 0 / a = 0 := by simp -- note: integral domain has a "mul_ne_zero". A commutative division ring is an integral -- domain, but let's not define that class for now. theorem division_ring.mul_ne_zero (Ha : a ≠ 0) (Hb : b ≠ 0) : a * b ≠ 0 := assume H : a * b = 0, have C1 : a = 0, by rewrite [-mul_one a, -(mul_one_div_cancel Hb), -mul.assoc, H, zero_mul], absurd C1 Ha theorem mul_ne_zero_comm (H : a * b ≠ 0) : b * a ≠ 0 := have H2 : a ≠ 0 ∧ b ≠ 0, from ne_zero_and_ne_zero_of_mul_ne_zero H, division_ring.mul_ne_zero (and.right H2) (and.left H2) theorem eq_one_div_of_mul_eq_one (H : a * b = 1) : b = 1 / a := have a ≠ 0, from suppose a = 0, have 0 = (1:A), by inst_simp, absurd this zero_ne_one, have b = (1 / a) * a * b, by inst_simp, show b = 1 / a, by inst_simp theorem eq_one_div_of_mul_eq_one_left (H : b * a = 1) : b = 1 / a := have a ≠ 0, from suppose a = 0, have 0 = (1:A), by inst_simp, absurd this zero_ne_one, by inst_simp theorem division_ring.one_div_mul_one_div (Ha : a ≠ 0) (Hb : b ≠ 0) : (1 / a) * (1 / b) = 1 / (b * a) := have (b * a) * ((1 / a) * (1 / b)) = 1, by inst_simp, eq_one_div_of_mul_eq_one this theorem one_div_neg_one_eq_neg_one : (1:A) / (-1) = -1 := have (-1) * (-1) = (1:A), by inst_simp, symm (eq_one_div_of_mul_eq_one this) theorem division_ring.one_div_neg_eq_neg_one_div (H : a ≠ 0) : 1 / (- a) = - (1 / a) := have -1 ≠ 0, from (suppose -1 = 0, absurd (symm (calc 1 = -(-1) : neg_neg ... = -0 : this ... = (0:A) : neg_zero)) zero_ne_one), calc 1 / (- a) = 1 / ((-1) * a) : neg_eq_neg_one_mul ... = (1 / a) * (1 / (- 1)) : division_ring.one_div_mul_one_div H this ... = (1 / a) * (-1) : one_div_neg_one_eq_neg_one ... = - (1 / a) : mul_neg_one_eq_neg theorem div_neg_eq_neg_div (b : A) (Ha : a ≠ 0) : b / (- a) = - (b / a) := calc b / (- a) = b * (1 / (- a)) : by rewrite -inv_eq_one_div ... = b * -(1 / a) : division_ring.one_div_neg_eq_neg_one_div Ha ... = -(b * (1 / a)) : neg_mul_eq_mul_neg ... = - (b * a⁻¹) : inv_eq_one_div theorem neg_div (a b : A) : (-b) / a = - (b / a) := by rewrite [neg_eq_neg_one_mul, mul_div_assoc, -neg_eq_neg_one_mul] theorem division_ring.neg_div_neg_eq (a : A) {b : A} (Hb : b ≠ 0) : (-a) / (-b) = a / b := by rewrite [(div_neg_eq_neg_div _ Hb), neg_div, neg_neg] theorem division_ring.one_div_one_div (H : a ≠ 0) : 1 / (1 / a) = a := symm (eq_one_div_of_mul_eq_one_left (mul_one_div_cancel H)) theorem division_ring.eq_of_one_div_eq_one_div (Ha : a ≠ 0) (Hb : b ≠ 0) (H : 1 / a = 1 / b) : a = b := by rewrite [-(division_ring.one_div_one_div Ha), H, (division_ring.one_div_one_div Hb)] theorem mul_inv_eq [simp] (Ha : a ≠ 0) (Hb : b ≠ 0) : (b * a)⁻¹ = a⁻¹ * b⁻¹ := eq.symm (calc a⁻¹ * b⁻¹ = (1 / a) * (1 / b) : by inst_simp ... = (1 / (b * a)) : division_ring.one_div_mul_one_div Ha Hb ... = (b * a)⁻¹ : by simp) theorem mul_div_cancel (a : A) {b : A} (Hb : b ≠ 0) : a * b / b = a := by simp theorem div_mul_cancel (a : A) {b : A} (Hb : b ≠ 0) : a / b * b = a := by simp theorem div_add_div_same (a b c : A) : a / c + b / c = (a + b) / c := !right_distrib⁻¹ theorem div_sub_div_same (a b c : A) : (a / c) - (b / c) = (a - b) / c := by rewrite [sub_eq_add_neg, -neg_div, div_add_div_same] theorem one_div_mul_add_mul_one_div_eq_one_div_add_one_div (Ha : a ≠ 0) (Hb : b ≠ 0) : (1 / a) * (a + b) * (1 / b) = 1 / a + 1 / b := by rewrite [(left_distrib (1 / a)), (one_div_mul_cancel Ha), right_distrib, one_mul, mul.assoc, (mul_one_div_cancel Hb), mul_one, add.comm] theorem one_div_mul_sub_mul_one_div_eq_one_div_add_one_div (Ha : a ≠ 0) (Hb : b ≠ 0) : (1 / a) * (b - a) * (1 / b) = 1 / a - 1 / b := by rewrite [(mul_sub_left_distrib (1 / a)), (one_div_mul_cancel Ha), mul_sub_right_distrib, one_mul, mul.assoc, (mul_one_div_cancel Hb), mul_one] theorem div_eq_one_iff_eq (a : A) {b : A} (Hb : b ≠ 0) : a / b = 1 ↔ a = b := iff.intro (suppose a / b = 1, calc a = a / b * b : by inst_simp ... = 1 * b : this ... = b : by simp) (suppose a = b, by simp) theorem eq_of_div_eq_one (a : A) {b : A} (Hb : b ≠ 0) : a / b = 1 → a = b := iff.mp (!div_eq_one_iff_eq Hb) theorem eq_div_iff_mul_eq (a : A) {b : A} (Hc : c ≠ 0) : a = b / c ↔ a * c = b := iff.intro (suppose a = b / c, by rewrite [this, (!div_mul_cancel Hc)]) (suppose a * c = b, by rewrite [-(mul_div_cancel a Hc), this]) theorem eq_div_of_mul_eq (a b : A) {c : A} (Hc : c ≠ 0) : a * c = b → a = b / c := iff.mpr (!eq_div_iff_mul_eq Hc) theorem mul_eq_of_eq_div (a b: A) {c : A} (Hc : c ≠ 0) : a = b / c → a * c = b := iff.mp (!eq_div_iff_mul_eq Hc) theorem add_div_eq_mul_add_div (a b : A) {c : A} (Hc : c ≠ 0) : a + b / c = (a * c + b) / c := have (a + b / c) * c = a * c + b, by rewrite [right_distrib, (!div_mul_cancel Hc)], (iff.elim_right (!eq_div_iff_mul_eq Hc)) this theorem mul_mul_div (a : A) {c : A} (Hc : c ≠ 0) : a = a * c * (1 / c) := by simp -- There are many similar rules to these last two in the Isabelle library -- that haven't been ported yet. Do as necessary. end division_ring structure field [class] (A : Type) extends division_ring A, comm_ring A section field variables [s : field A] {a b c d: A} include s theorem field.one_div_mul_one_div (Ha : a ≠ 0) (Hb : b ≠ 0) : (1 / a) * (1 / b) = 1 / (a * b) := by rewrite [(division_ring.one_div_mul_one_div Ha Hb), mul.comm b] theorem field.div_mul_right (Hb : b ≠ 0) (H : a * b ≠ 0) : a / (a * b) = 1 / b := have a ≠ 0, from and.left (ne_zero_and_ne_zero_of_mul_ne_zero H), symm (calc 1 / b = a * ((1 / a) * (1 / b)) : by inst_simp ... = a * (1 / (b * a)) : division_ring.one_div_mul_one_div this Hb ... = a * (a * b)⁻¹ : by inst_simp) theorem field.div_mul_left (Ha : a ≠ 0) (H : a * b ≠ 0) : b / (a * b) = 1 / a := let H1 : b * a ≠ 0 := mul_ne_zero_comm H in by rewrite [mul.comm a, (field.div_mul_right Ha H1)] theorem mul_div_cancel_left (Ha : a ≠ 0) : a * b / a = b := by rewrite [mul.comm a, (!mul_div_cancel Ha)] theorem mul_div_cancel' (Hb : b ≠ 0) : b * (a / b) = a := by rewrite [mul.comm, (!div_mul_cancel Hb)] theorem one_div_add_one_div (Ha : a ≠ 0) (Hb : b ≠ 0) : 1 / a + 1 / b = (a + b) / (a * b) := have a * b ≠ 0, from (division_ring.mul_ne_zero Ha Hb), by rewrite [add.comm, -(field.div_mul_left Ha this), -(field.div_mul_right Hb this), *division.def, -right_distrib] theorem field.div_mul_div (a : A) {b : A} (c : A) {d : A} (Hb : b ≠ 0) (Hd : d ≠ 0) : (a / b) * (c / d) = (a * c) / (b * d) := by inst_simp theorem mul_div_mul_left (a : A) {b c : A} (Hb : b ≠ 0) (Hc : c ≠ 0) : (c * a) / (c * b) = a / b := by rewrite [-(!field.div_mul_div Hc Hb), (div_self Hc), one_mul] theorem mul_div_mul_right (a : A) {b c : A} (Hb : b ≠ 0) (Hc : c ≠ 0) : (a * c) / (b * c) = a / b := by rewrite [(mul.comm a), (mul.comm b), (!mul_div_mul_left Hb Hc)] theorem div_mul_eq_mul_div (a b c : A) : (b / c) * a = (b * a) / c := by rewrite [*division.def, mul.assoc, (mul.comm c⁻¹), -mul.assoc] theorem field.div_mul_eq_mul_div_comm (a b : A) {c : A} (Hc : c ≠ 0) : (b / c) * a = b * (a / c) := by rewrite [(div_mul_eq_mul_div), -(one_mul c), -(!field.div_mul_div (ne.symm zero_ne_one) Hc), div_one, one_mul] theorem div_add_div (a : A) {b : A} (c : A) {d : A} (Hb : b ≠ 0) (Hd : d ≠ 0) : (a / b) + (c / d) = ((a * d) + (b * c)) / (b * d) := by rewrite [-(!mul_div_mul_right Hb Hd), -(!mul_div_mul_left Hd Hb), div_add_div_same] theorem div_sub_div (a : A) {b : A} (c : A) {d : A} (Hb : b ≠ 0) (Hd : d ≠ 0) : (a / b) - (c / d) = ((a * d) - (b * c)) / (b * d) := by rewrite [*sub_eq_add_neg, neg_eq_neg_one_mul, -mul_div_assoc, (!div_add_div Hb Hd), -mul.assoc, (mul.comm b), mul.assoc, -neg_eq_neg_one_mul] theorem mul_eq_mul_of_div_eq_div (a : A) {b : A} (c : A) {d : A} (Hb : b ≠ 0) (Hd : d ≠ 0) (H : a / b = c / d) : a * d = c * b := by rewrite [-mul_one (a*d), mul.assoc, (mul.comm d), -mul.assoc, -(div_self Hb), -(!field.div_mul_eq_mul_div_comm Hb), H, (div_mul_eq_mul_div), (!div_mul_cancel Hd)] theorem field.one_div_div (Ha : a ≠ 0) (Hb : b ≠ 0) : 1 / (a / b) = b / a := have (a / b) * (b / a) = 1, from calc (a / b) * (b / a) = (a * b) / (b * a) : !field.div_mul_div Hb Ha ... = (a * b) / (a * b) : mul.comm ... = 1 : div_self (division_ring.mul_ne_zero Ha Hb), symm (eq_one_div_of_mul_eq_one this) theorem field.div_div_eq_mul_div (a : A) {b c : A} (Hb : b ≠ 0) (Hc : c ≠ 0) : a / (b / c) = (a * c) / b := by rewrite [div_eq_mul_one_div, (field.one_div_div Hb Hc), -mul_div_assoc] theorem field.div_div_eq_div_mul (a : A) {b c : A} (Hb : b ≠ 0) (Hc : c ≠ 0) : (a / b) / c = a / (b * c) := by rewrite [div_eq_mul_one_div, (!field.div_mul_div Hb Hc), mul_one] theorem field.div_div_div_div_eq (a : A) {b c d : A} (Hb : b ≠ 0) (Hc : c ≠ 0) (Hd : d ≠ 0) : (a / b) / (c / d) = (a * d) / (b * c) := by rewrite [(!field.div_div_eq_mul_div Hc Hd), (div_mul_eq_mul_div), (!field.div_div_eq_div_mul Hb Hc)] theorem field.div_mul_eq_div_mul_one_div (a : A) {b c : A} (Hb : b ≠ 0) (Hc : c ≠ 0) : a / (b * c) = (a / b) * (1 / c) := by rewrite [-!field.div_div_eq_div_mul Hb Hc, -div_eq_mul_one_div] theorem eq_of_mul_eq_mul_of_nonzero_left {a b c : A} (H : a ≠ 0) (H2 : a * b = a * c) : b = c := by rewrite [-one_mul b, -div_self H, div_mul_eq_mul_div, H2, mul_div_cancel_left H] theorem eq_of_mul_eq_mul_of_nonzero_right {a b c : A} (H : c ≠ 0) (H2 : a * c = b * c) : a = b := by rewrite [-mul_one a, -div_self H, -mul_div_assoc, H2, mul_div_cancel _ H] end field structure discrete_field [class] (A : Type) extends field A := (has_decidable_eq : decidable_eq A) (inv_zero : inv zero = zero) attribute discrete_field.has_decidable_eq [instance] section discrete_field variable [s : discrete_field A] include s variables {a b c d : A} -- many of the theorems in discrete_field are the same as theorems in field or division ring, -- but with fewer hypotheses since 0⁻¹ = 0 and equality is decidable. theorem discrete_field.eq_zero_or_eq_zero_of_mul_eq_zero (x y : A) (H : x * y = 0) : x = 0 ∨ y = 0 := decidable.by_cases (suppose x = 0, or.inl this) (suppose x ≠ 0, or.inr (by rewrite [-one_mul y, -(inv_mul_cancel this), mul.assoc, H, mul_zero])) definition discrete_field.to_integral_domain [trans_instance] : integral_domain A := ⦃ integral_domain, s, eq_zero_or_eq_zero_of_mul_eq_zero := discrete_field.eq_zero_or_eq_zero_of_mul_eq_zero⦄ theorem inv_zero : 0⁻¹ = (0:A) := !discrete_field.inv_zero theorem one_div_zero : 1 / 0 = (0:A) := calc 1 / 0 = 1 * 0⁻¹ : refl ... = 1 * 0 : inv_zero ... = 0 : mul_zero theorem div_zero (a : A) : a / 0 = 0 := by rewrite [div_eq_mul_one_div, one_div_zero, mul_zero] theorem ne_zero_of_one_div_ne_zero (H : 1 / a ≠ 0) : a ≠ 0 := assume Ha : a = 0, absurd (Ha⁻¹ ▸ one_div_zero) H theorem eq_zero_of_one_div_eq_zero (H : 1 / a = 0) : a = 0 := decidable.by_cases (assume Ha, Ha) (assume Ha, false.elim ((one_div_ne_zero Ha) H)) variables (a b) theorem one_div_mul_one_div' : (1 / a) * (1 / b) = 1 / (b * a) := decidable.by_cases (suppose a = 0, by rewrite [this, div_zero, zero_mul, -(@div_zero A s 1), mul_zero b]) (assume Ha : a ≠ 0, decidable.by_cases (suppose b = 0, by rewrite [this, div_zero, mul_zero, -(@div_zero A s 1), zero_mul a]) (suppose b ≠ 0, division_ring.one_div_mul_one_div Ha this)) theorem one_div_neg_eq_neg_one_div : 1 / (- a) = - (1 / a) := decidable.by_cases (suppose a = 0, by rewrite [this, neg_zero, 2 div_zero, neg_zero]) (suppose a ≠ 0, division_ring.one_div_neg_eq_neg_one_div this) theorem neg_div_neg_eq : (-a) / (-b) = a / b := decidable.by_cases (assume Hb : b = 0, by rewrite [Hb, neg_zero, 2 div_zero]) (assume Hb : b ≠ 0, !division_ring.neg_div_neg_eq Hb) theorem one_div_one_div : 1 / (1 / a) = a := decidable.by_cases (assume Ha : a = 0, by rewrite [Ha, 2 div_zero]) (assume Ha : a ≠ 0, division_ring.one_div_one_div Ha) variables {a b} theorem eq_of_one_div_eq_one_div (H : 1 / a = 1 / b) : a = b := decidable.by_cases (assume Ha : a = 0, have Hb : b = 0, from eq_zero_of_one_div_eq_zero (by rewrite [-H, Ha, div_zero]), Hb⁻¹ ▸ Ha) (assume Ha : a ≠ 0, have Hb : b ≠ 0, from ne_zero_of_one_div_ne_zero (H ▸ (one_div_ne_zero Ha)), division_ring.eq_of_one_div_eq_one_div Ha Hb H) variables (a b) theorem mul_inv' : (b * a)⁻¹ = a⁻¹ * b⁻¹ := decidable.by_cases (assume Ha : a = 0, by rewrite [Ha, mul_zero, 2 inv_zero, zero_mul]) (assume Ha : a ≠ 0, decidable.by_cases (assume Hb : b = 0, by rewrite [Hb, zero_mul, 2 inv_zero, mul_zero]) (assume Hb : b ≠ 0, mul_inv_eq Ha Hb)) -- the following are specifically for fields theorem one_div_mul_one_div : (1 / a) * (1 / b) = 1 / (a * b) := by rewrite [one_div_mul_one_div', mul.comm b] variable {a} theorem div_mul_right (Ha : a ≠ 0) : a / (a * b) = 1 / b := decidable.by_cases (assume Hb : b = 0, by rewrite [Hb, mul_zero, 2 div_zero]) (assume Hb : b ≠ 0, field.div_mul_right Hb (mul_ne_zero Ha Hb)) variables (a) {b} theorem div_mul_left (Hb : b ≠ 0) : b / (a * b) = 1 / a := by rewrite [mul.comm a, div_mul_right _ Hb] variables (a b c) theorem div_mul_div : (a / b) * (c / d) = (a * c) / (b * d) := decidable.by_cases (assume Hb : b = 0, by rewrite [Hb, div_zero, zero_mul, -(@div_zero A s (a * c)), zero_mul]) (assume Hb : b ≠ 0, decidable.by_cases (assume Hd : d = 0, by rewrite [Hd, div_zero, mul_zero, -(@div_zero A s (a * c)), mul_zero]) (assume Hd : d ≠ 0, !field.div_mul_div Hb Hd)) variable {c} theorem mul_div_mul_left' (Hc : c ≠ 0) : (c * a) / (c * b) = a / b := decidable.by_cases (assume Hb : b = 0, by rewrite [Hb, mul_zero, 2 div_zero]) (assume Hb : b ≠ 0, !mul_div_mul_left Hb Hc) theorem mul_div_mul_right' (Hc : c ≠ 0) : (a * c) / (b * c) = a / b := by rewrite [(mul.comm a), (mul.comm b), (!mul_div_mul_left' Hc)] variables (a b c d) theorem div_mul_eq_mul_div_comm : (b / c) * a = b * (a / c) := decidable.by_cases (assume Hc : c = 0, by rewrite [Hc, div_zero, zero_mul, -(mul_zero b), -(@div_zero A s a)]) (assume Hc : c ≠ 0, !field.div_mul_eq_mul_div_comm Hc) theorem one_div_div : 1 / (a / b) = b / a := decidable.by_cases (assume Ha : a = 0, by rewrite [Ha, zero_div, 2 div_zero]) (assume Ha : a ≠ 0, decidable.by_cases (assume Hb : b = 0, by rewrite [Hb, 2 div_zero, zero_div]) (assume Hb : b ≠ 0, field.one_div_div Ha Hb)) theorem div_div_eq_mul_div : a / (b / c) = (a * c) / b := by rewrite [div_eq_mul_one_div, one_div_div, -mul_div_assoc] theorem div_div_eq_div_mul : (a / b) / c = a / (b * c) := by rewrite [div_eq_mul_one_div, div_mul_div, mul_one] theorem div_div_div_div_eq : (a / b) / (c / d) = (a * d) / (b * c) := by rewrite [div_div_eq_mul_div, div_mul_eq_mul_div, div_div_eq_div_mul] variable {a} theorem div_helper (H : a ≠ 0) : (1 / (a * b)) * a = 1 / b := by rewrite [div_mul_eq_mul_div, one_mul, !div_mul_right H] variable (a) theorem div_mul_eq_div_mul_one_div : a / (b * c) = (a / b) * (1 / c) := by rewrite [-div_div_eq_div_mul, -div_eq_mul_one_div] end discrete_field namespace norm_num theorem div_add_helper [s : field A] (n d b c val : A) (Hd : d ≠ 0) (H : n + b * d = val) (H2 : c * d = val) : n / d + b = c := begin apply eq_of_mul_eq_mul_of_nonzero_right Hd, rewrite [H2, -H, right_distrib, div_mul_cancel _ Hd] end theorem add_div_helper [s : field A] (n d b c val : A) (Hd : d ≠ 0) (H : d * b + n = val) (H2 : d * c = val) : b + n / d = c := begin apply eq_of_mul_eq_mul_of_nonzero_left Hd, rewrite [H2, -H, left_distrib, mul_div_cancel' Hd] end theorem div_mul_helper [s : field A] (n d c v : A) (Hd : d ≠ 0) (H : (n * c) / d = v) : (n / d) * c = v := by rewrite [-H, field.div_mul_eq_mul_div_comm _ _ Hd, mul_div_assoc] theorem mul_div_helper [s : field A] (a n d v : A) (Hd : d ≠ 0) (H : (a * n) / d = v) : a * (n / d) = v := by rewrite [-H, mul_div_assoc] theorem nonzero_of_div_helper [s : field A] (a b : A) (Ha : a ≠ 0) (Hb : b ≠ 0) : a / b ≠ 0 := begin intro Hab, have Habb : (a / b) * b = 0, by rewrite [Hab, zero_mul], rewrite [div_mul_cancel _ Hb at Habb], exact Ha Habb end theorem div_helper [s : field A] (n d v : A) (Hd : d ≠ 0) (H : v * d = n) : n / d = v := begin apply eq_of_mul_eq_mul_of_nonzero_right Hd, rewrite (div_mul_cancel _ Hd), exact eq.symm H end theorem div_eq_div_helper [s : field A] (a b c d v : A) (H1 : a * d = v) (H2 : c * b = v) (Hb : b ≠ 0) (Hd : d ≠ 0) : a / b = c / d := begin apply eq_div_of_mul_eq, exact Hd, rewrite div_mul_eq_mul_div, apply eq.symm, apply eq_div_of_mul_eq, exact Hb, rewrite [H1, H2] end theorem subst_into_div [s : has_div A] (a₁ b₁ a₂ b₂ v : A) (H : a₁ / b₁ = v) (H1 : a₂ = a₁) (H2 : b₂ = b₁) : a₂ / b₂ = v := by rewrite [H1, H2, H] end norm_num