import macros definition reflexive {A : TypeU} (R : A → A → Bool) := ∀ x, R x x definition transitive {A : TypeU} (R : A → A → Bool) := ∀ x y z, R x y → R y z → R x z definition subrelation {A : TypeU} (R1 : A → A → Bool) (R2 : A → A → Bool) := ∀ x y, R1 x y → R2 x y infix 50 ⊆ : subrelation -- (tcls R) is the transitive closure of relation R -- We define it as the intersection of all transitive relations containing R definition tcls {A : TypeU} (R : A → A → Bool) (a b : A) := ∀ P, (reflexive P) → (transitive P) → (R ⊆ P) → P a b notation 65 _⁺ : tcls -- use superscript + as notation for transitive closure theorem tcls_trans {A : TypeU} {R : A → A → Bool} {a b c : A} (Hab : R⁺ a b) (Hbc : R⁺ b c) : R⁺ a c := take P, assume Hrefl Htrans Hsub, let Pab : P a b := Hab P Hrefl Htrans Hsub, Pbc : P b c := Hbc P Hrefl Htrans Hsub in Htrans a b c Pab Pbc theorem tcls_refl {A : TypeU} (R : A → A → Bool) : ∀ a, R⁺ a a := take a P, assume Hrefl Htrans Hsub, Hrefl a theorem tcls_sub {A : TypeU} (R : A → A → Bool) : R ⊆ R⁺ := take a b, assume Hab : R a b, have R⁺ a b : take P, assume Hrefl Htrans Hsub, Hsub a b Hab theorem tcls_step {A : TypeU} {R : A → A → Bool} {a b c : A} (H1 : R a b) (H2 : R⁺ b c) : R⁺ a c := take P, assume Hrefl Htrans Hsub, Htrans a b c (Hsub a b H1) (H2 P Hrefl Htrans Hsub) theorem tcls_smallest {A : TypeU} (R : A → A → Bool) : ∀ P, (reflexive P) → (transitive P) → (R ⊆ P) → (R⁺ ⊆ P) := take P, assume Hrefl Htrans Hsub, take a b, assume H : R⁺ a b, have P a b : H P Hrefl Htrans Hsub