/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Haitao Zhang The propositional connectives. See also init.datatypes and init.logic. -/ open eq.ops variables {a b c d : Prop} /- implies -/ definition imp (a b : Prop) : Prop := a → b theorem imp.id (H : a) : a := H theorem imp.intro (H : a) (H₂ : b) : a := H theorem imp.mp (H : a) (H₂ : a → b) : b := H₂ H theorem imp.syl (H : a → b) (H₂ : c → a) (Hc : c) : b := H (H₂ Hc) theorem imp.left (H : a → b) (H₂ : b → c) (Ha : a) : c := H₂ (H Ha) theorem imp_true (a : Prop) : (a → true) ↔ true := iff_true_intro (imp.intro trivial) theorem true_imp (a : Prop) : (true → a) ↔ a := iff.intro (assume H, H trivial) imp.intro theorem imp_false (a : Prop) : (a → false) ↔ ¬ a := iff.rfl theorem false_imp (a : Prop) : (false → a) ↔ true := iff_true_intro false.elim /- not -/ theorem not.elim {A : Type} (H1 : ¬a) (H2 : a) : A := absurd H2 H1 theorem not.intro (H : a → false) : ¬a := H theorem not.mto {a b : Prop} : (a → b) → ¬b → ¬a := imp.left theorem not_imp_not_of_imp {a b : Prop} : (a → b) → ¬b → ¬a := not.mto theorem not_not_of_not_implies : ¬(a → b) → ¬¬a := not.mto not.elim theorem not_of_not_implies : ¬(a → b) → ¬b := not.mto imp.intro theorem not_not_em : ¬¬(a ∨ ¬a) := assume not_em : ¬(a ∨ ¬a), not_em (or.inr (not.mto or.inl not_em)) theorem not_iff_not (H : a ↔ b) : ¬a ↔ ¬b := iff.intro (not.mto (iff.mpr H)) (not.mto (iff.mp H)) /- and -/ definition not_and_of_not_left (b : Prop) : ¬a → ¬(a ∧ b) := not.mto and.left definition not_and_of_not_right (a : Prop) {b : Prop} : ¬b → ¬(a ∧ b) := not.mto and.right theorem and.imp_left (H : a → b) : a ∧ c → b ∧ c := and.imp H imp.id theorem and.imp_right (H : a → b) : c ∧ a → c ∧ b := and.imp imp.id H theorem and_of_and_of_imp_of_imp (H₁ : a ∧ b) (H₂ : a → c) (H₃ : b → d) : c ∧ d := and.imp H₂ H₃ H₁ theorem and_of_and_of_imp_left (H₁ : a ∧ c) (H : a → b) : b ∧ c := and.imp_left H H₁ theorem and_of_and_of_imp_right (H₁ : c ∧ a) (H : a → b) : c ∧ b := and.imp_right H H₁ theorem and_imp_iff (a b c : Prop) : (a ∧ b → c) ↔ (a → b → c) := iff.intro (λH a b, H (and.intro a b)) and.rec theorem and_imp_eq (a b c : Prop) : (a ∧ b → c) = (a → b → c) := propext !and_imp_iff /- or -/ definition not_or : ¬a → ¬b → ¬(a ∨ b) := or.rec theorem or_of_or_of_imp_of_imp (H₁ : a ∨ b) (H₂ : a → c) (H₃ : b → d) : c ∨ d := or.imp H₂ H₃ H₁ theorem or_of_or_of_imp_left (H₁ : a ∨ c) (H : a → b) : b ∨ c := or.imp_left H H₁ theorem or_of_or_of_imp_right (H₁ : c ∨ a) (H : a → b) : c ∨ b := or.imp_right H H₁ theorem or.elim3 (H : a ∨ b ∨ c) (Ha : a → d) (Hb : b → d) (Hc : c → d) : d := or.elim H Ha (assume H₂, or.elim H₂ Hb Hc) theorem or_resolve_right (H₁ : a ∨ b) (H₂ : ¬a) : b := or.elim H₁ (not.elim H₂) imp.id theorem or_resolve_left (H₁ : a ∨ b) : ¬b → a := or_resolve_right (or.swap H₁) theorem or.imp_distrib : ((a ∨ b) → c) ↔ ((a → c) ∧ (b → c)) := iff.intro (λH, and.intro (imp.syl H or.inl) (imp.syl H or.inr)) (and.rec or.rec) theorem or_iff_right_of_imp {a b : Prop} (Ha : a → b) : (a ∨ b) ↔ b := iff.intro (or.rec Ha imp.id) or.inr theorem or_iff_left_of_imp {a b : Prop} (Hb : b → a) : (a ∨ b) ↔ a := iff.intro (or.rec imp.id Hb) or.inl theorem or_iff_or (H1 : a ↔ c) (H2 : b ↔ d) : (a ∨ b) ↔ (c ∨ d) := iff.intro (or.imp (iff.mp H1) (iff.mp H2)) (or.imp (iff.mpr H1) (iff.mpr H2)) /- distributivity -/ theorem and.left_distrib (a b c : Prop) : a ∧ (b ∨ c) ↔ (a ∧ b) ∨ (a ∧ c) := iff.intro (and.rec (λH, or.imp (and.intro H) (and.intro H))) (or.rec (and.imp_right or.inl) (and.imp_right or.inr)) theorem and.right_distrib (a b c : Prop) : (a ∨ b) ∧ c ↔ (a ∧ c) ∨ (b ∧ c) := iff.trans (iff.trans !and.comm !and.left_distrib) (or_iff_or !and.comm !and.comm) theorem or.left_distrib (a b c : Prop) : a ∨ (b ∧ c) ↔ (a ∨ b) ∧ (a ∨ c) := iff.intro (or.rec (λH, and.intro (or.inl H) (or.inl H)) (and.imp or.inr or.inr)) (and.rec (or.rec (imp.syl imp.intro or.inl) (imp.syl or.imp_right and.intro))) theorem or.right_distrib (a b c : Prop) : (a ∧ b) ∨ c ↔ (a ∨ c) ∧ (b ∨ c) := iff.trans (iff.trans !or.comm !or.left_distrib) (and_congr !or.comm !or.comm) /- iff -/ definition iff.def : (a ↔ b) = ((a → b) ∧ (b → a)) := rfl theorem forall_imp_forall {A : Type} {P Q : A → Prop} (H : ∀a, (P a → Q a)) (p : ∀a, P a) (a : A) : Q a := (H a) (p a) theorem imp_iff {P : Prop} (Q : Prop) (p : P) : (P → Q) ↔ Q := iff.intro (λf, f p) imp.intro