/- Copyright (c) 2015 Haitao Zhang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Haitao Zhang Finite ordinal types. -/ import data.list.basic data.finset.basic data.fintype.card open eq.ops nat function list finset fintype structure fin (n : nat) := (val : nat) (is_lt : val < n) attribute fin.val [coercion] definition less_than [reducible] := fin namespace fin section open decidable protected definition has_decidable_eq [instance] (n : nat) : ∀ (i j : fin n), decidable (i = j) | (mk ival ilt) (mk jval jlt) := match nat.has_decidable_eq ival jval with | inl veq := inl (by substvars) | inr vne := inr (by intro h; injection h; contradiction) end end lemma dinj_lt (n : nat) : dinj (λ i, i < n) fin.mk := take a1 a2 Pa1 Pa2 Pmkeq, fin.no_confusion Pmkeq (λ Pe Pqe, Pe) lemma val_mk (n i : nat) (Plt : i < n) : fin.val (fin.mk i Plt) = i := rfl definition upto [reducible] (n : nat) : list (fin n) := dmap (λ i, i < n) fin.mk (list.upto n) lemma nodup_upto (n : nat) : nodup (upto n) := dmap_nodup_of_dinj (dinj_lt n) (list.nodup_upto n) lemma mem_upto (n : nat) : ∀ (i : fin n), i ∈ upto n := take i, fin.destruct i (take ival Piltn, assert Pin : ival ∈ list.upto n, from mem_upto_of_lt Piltn, mem_dmap Piltn Pin) lemma upto_zero : upto 0 = [] := by rewrite [↑upto, list.upto_nil, dmap_nil] lemma map_val_upto (n : nat) : map fin.val (upto n) = list.upto n := map_dmap_of_pos_of_inv (val_mk n) (@lt_of_mem_upto n) lemma length_upto (n : nat) : length (upto n) = n := calc length (upto n) = length (list.upto n) : (map_val_upto n ▸ length_map fin.val (upto n))⁻¹ ... = n : list.length_upto n definition is_fintype [instance] (n : nat) : fintype (fin n) := fintype.mk (upto n) (nodup_upto n) (mem_upto n) section pigeonhole open fintype lemma card_fin (n : nat) : card (fin n) = n := length_upto n theorem pigeonhole {n m : nat} (Pmltn : m < n) : ¬∃ f : fin n → fin m, injective f := assume Pex, absurd Pmltn (not_lt_of_ge (calc n = card (fin n) : card_fin ... ≤ card (fin m) : card_le_of_inj (fin n) (fin m) Pex ... = m : card_fin)) end pigeonhole definition zero (n : nat) : fin (succ n) := mk 0 !zero_lt_succ variable {n : nat} theorem val_lt : ∀ i : fin n, val i < n | (mk v h) := h definition lift : fin n → Π m, fin (n + m) | (mk v h) m := mk v (lt_add_of_lt_right h m) theorem val_lift : ∀ (i : fin n) (m : nat), val i = val (lift i m) | (mk v h) m := rfl definition pred : fin n → fin n | (mk v h) := mk (nat.pred v) (pre_lt_of_lt h) lemma val_pred : ∀ (i : fin n), val (pred i) = nat.pred (val i) | (mk v h) := rfl lemma pred_zero : pred (zero n) = zero n := rfl definition mk_pred (i : nat) (h : succ i < succ n) : fin n := mk i (lt_of_succ_lt_succ h) definition succ : fin n → fin (succ n) | (mk v h) := mk (nat.succ v) (succ_lt_succ h) lemma val_succ : ∀ (i : fin n), val (succ i) = nat.succ (val i) | (mk v h) := rfl definition elim0 {C : Type} : fin 0 → C | (mk v h) := absurd h !not_lt_zero end fin