# Lua API documentation We the [Lua](http://www.lua.org) script language to customize and extend [Lean](http://leanprover.net). This [link](http://www.lua.org/docs.html) is a good starting point for learning Lua. In this document, we focus on the Lean specific APIs. Most of Lean components are exposed in the Lua API. **Remark:** the script [md2lua.sh](md2lua.sh) extracts the Lua code examples from the `*.md` documentation files in this directory. ## Hierarchical names In Lean, we use _hierarchical names_ for identifying configuration options, constants, and kernel objects. A hierarchical name is essentially a list of strings and integers. The following example demonstrates how to create and manipulate hierarchical names using the Lua API. ```lua local x = name("x") -- create a simple hierarchical name local y = name("y") -- In Lua, 'assert(p)' succeeds if 'p' does not evaluate to false (or nil) assert(x == name("x")) -- test if 'x' is equal to 'name("x")' assert(x ~= y) -- '~=' is the not equal operator in Lua assert(x ~= "x") assert(is_name(x)) -- test whether argument is a hierarchical name or not. assert(not is_name("x")) local x1 = name(x, 1) -- x1 is a name composed of the string "x" and number 1 assert(tostring(x1) == "x.1") assert(x1 ~= name("x.1")) -- x1 is not equal to the string x.1 assert(x1 == name("x", 1)) local o = name("lean", "pp", "colors") -- The previous construct is syntax sugar for the following expression assert(o == name(name(name("lean"), "pp"), "colors")) assert(x < y) -- '<' is a total order on hierarchical names local h = x:hash() -- retrieve the hash code for 'x' assert(h ~= y:hash()) ``` ## Lua tables Tables are the only mutable, non-atomic type of data in Lua. Tables are used to implement mappings, arrays, lists, objects, etc. Here is a small examples demonstrating how to use Lua tables: ```lua local t = {} -- create an empty table t["x"] = 10 -- insert the entry "x" -> 10 t.x = 20 -- syntax-sugar for t["x"] = 20 t["y"] = 30 -- insert the entry "y" -> 30 assert(t["x"] == 20) local p = { x = 10, y = 20 } -- create a table with two entries assert(p.x == 10) assert(p["x"] == 10) assert(p.y == 20) assert(p["y"] == 20) ``` Arrays are implemented by indexing tables with integers. The arrays don't have a fixed size and grow dynamically. The arrays in Lua usually start at index 1. The Lua libraries use this convention. The following example initializes an array with 100 elements. ```lua local a = {} -- new array for i=1, 100 do a[i] = 0 end local b = {2, 4, 6, 8, 10} -- create an array with 5 elements assert(#b == 5) -- array has 5 elements assert(b[1] == 2) assert(b[2] == 4) ``` In Lua, we cannot provide custom hash and equality functions to tables. So, we cannot effectively use Lua tables to implement mappings where the keys are Lean hierarchical names, expressions, etc. The following example demonstrates the issue. ```lua local m = {} -- create empty table local a = name("a") m[a] = 10 -- map the hierarchical name 'a' to 10 assert(m[a] == 10) local a1 = name("a") assert(a == a1) -- 'a' and 'a1' are the same hierarchical name assert(m[a1] == nil) -- 'a1' is not a key in the mapping 'm' assert(m[a] == 10) -- 'a' and 'a1' are two instances of the same object -- Lua tables assume that different instances are not equal ``` ## Red-black tree maps In Lean, we provide red-black tree maps for implementing mappings where the keys are Lean objects such as hierarchical names. The maps are implemented on top of [red-black tree data structure](http://en.wikipedia.org/wiki/Red%E2%80%93black_tree). We can also use Lua atomic data types as keys in these maps. However, we should not mix different types in the same map. The Lean map assumes that `<` is a total order on the keys inserted in the map. ```lua local m = rb_map() -- create an empty red-black tree map assert(is_rb_map(m)) assert(#m == 0) local a = name("a", 1) local a1 = name("a", 1) m:insert(a, 10) -- add the entry 'a.1' -> 10 assert(m:find(a1) == 10) m:insert(name("b"), 20) assert(#m == 2) m:erase(a) -- remove entry with key 'a.1' assert(m:find(a) == nil) assert(not m:contains(a)) assert(#m == 1) m:insert(name("c"), 30) m:for_each( -- traverse the entries in the map function(k, v) -- executing the given function print(k, v) end ) local m2 = m:copy() -- the maps are copied in constant time assert(#m2 == #m) m2:insert(name("b", 2), 40) assert(#m2 == #m + 1) ``` ## Multiple precision numerals We expose [GMP](http://gmplib.org/) (GNU Multiple precision arithmetic library) in Lua. Internally, Lean uses multiple precision numerals for representing expressing containing numerals. In Lua, we can create multiple precision integers (_mpz_) and multiple precision rationals (_mpq_). The following example demonstrates how to use `mpz` and `mpq` numerals. ```lua local ten = mpz(10) -- create the mpz numeral 10. assert(is_mpz(ten)) -- test whether 'ten' is a mpz numeral or not assert(not is_mpz(10)) local big = mpz("100000000000000000000000") -- create a mpz numeral from a string -- The operators +, -, *, /, ^, <, <=, >, >=, ==, ~= -- The operators +, -, *, /, ^ accept mixed mpz and Lua native types assert(ten + 1 == mpz(11)) -- In Lua, objects of different types are always different -- So, the mpz number 10 is different from the native Lua numeral 10 assert(mpz(10) ~= 10) assert(mpz(3) / 2 == mpz(1)) -- The second argument of ^ must be a non-negative Lua numeral assert(mpz(10) ^ 100 > mpz("1000000000000000000000000")) assert(mpz(3) * mpz("1000000000000000000000") == mpz("3000000000000000000000")) assert(mpz(4) + "10" == mpz(14)) local q1 = mpq(10) -- create the mpq numeral 10 local q2 = q1 / 3 -- create the mpq numeral 10/3 assert(q2 == mpq("10/3")) local q3 = mpq(0.25) -- create the mpq numeral 1/4 assert(q3 == mpq(1)/4) assert(is_mpq(q3)) -- test whether 'q3' is a mpq numeral or not assert(not is_mpq(mpz(10))) -- mpz numerals are not mpq assert(ten == mpz(10)) local q4 = mpq(ten) -- convert the mpz numeral 'ten' into a mpq numeral assert(is_mpq(q4)) assert(mpq(1)/3 + mpq(2)/3 == mpq(1)) assert(mpq(0.5)^5 == mpq("1/32")) assert(mpq(1)/2 > mpq("1/3")) ``` ## S-expressions In Lean, we use Lisp-like non-mutable S-expressions as a basis for building configuration options, statistics, formatting objects, and other structured objects. S-expressions can be atomic values (nil, strings, hierarchical names, integers, doubles, Booleans, and multiple precision integers and rationals), or pairs (aka _cons-cell_). The following example demonstrates how to create S-expressions using Lua. ```lua local s = sexpr(1, 2) -- Create a pair containing the atomic values 1 and 2 assert(is_sexpr(s)) -- 's' is a pair assert(s:is_cons()) -- 's' is a cons-cell/pair assert(s:head():is_atom()) -- the 'head' is an atomic S-expression assert(s:head() == sexpr(1)) -- the 'head' of 's' is the atomic S-expression 1 assert(s:tail() == sexpr(2)) -- the 'head' of 's' is the atomic S-expression 2 s = sexpr(1, 2, 3, nil) -- Create a 'list' containing 1, 2 and 3 assert(s:length() == 3) assert(s:head() == sexpr(1)) assert(s:tail() == sexpr(2, 3, nil)) assert(s:head():is_int()) -- the 'head' is an integer assert(s:head():to_int() == 1) -- return the integer stored in the 'head' of 's' local h, t = s:fields() -- return the 'head' and 'tail' of s assert(h == sexpr(1)) ``` The following example demonstrates how to test the kind of and extract the value stored in atomic S-expressions. ```lua assert(sexpr(1):is_int()) assert(sexpr(1):to_int() == 1) assert(sexpr(true):is_bool()) assert(sexpr(false):to_bool() == false) assert(sexpr("hello"):is_string()) assert(sexpr("hello"):to_string() == "hello") assert(sexpr(name("n", 1)):is_name()) assert(sexpr(name("n", 1)):to_name() == name("n", 1)) assert(sexpr(mpz(10)):is_mpz()) assert(sexpr(mpz(10)):to_mpz() == mpz(10)) assert(sexpr(mpq(3)/2):is_mpq()) assert(sexpr(mpq(3)/2):to_mpq() == mpq(6)/4) ``` We can also use the method `fields` to extract the value stored in atomic S-expressions. It is more convenient than using the `to_*` methods. ```lua assert(sexpr(10):fields() == 10) assert(sexpr("hello"):fields() == "hello") ``` The `to_*` methods raise an error is the argument does not match the expected type. Remark: in Lua, we catch errors using the builtin function [`pcall`](http://pgl.yoyo.org/luai/i/pcall) (aka _protected call_). ```lua local s = sexpr(10) local ok, ex = pcall(function() s:to_string() end) assert(not ok) -- 'ex' is a Lean exception assert(is_exception(ex)) ``` We say an S-expression `s` is a _list_ iff `s` is a pair, and the `tail` is nil or a list. So, every _list_ is a pair, but not every pair is a list. ```lua assert(sexpr(1, 2):is_cons()) -- The S-expression is a pair assert(not sexpr(1, 2):is_list()) -- This pair is not a list assert(sexpr(1, nil):is_list()) -- List with one element assert(sexpr(1, 2, nil):is_list()) -- List with two elements -- The expression sexpr(1, 2, nil) is syntax-sugar -- for sexpr(1, sexpr(2, nil)) assert(sexpr(1, 2, nil) == sexpr(1, sexpr(2, nil))) -- The methond 'length' returns the length of the list assert(sexpr(1, 2, nil):length() == 2) ``` We can encode trees using S-expressions. The following example demonstrates how to write a simple recursive function that collects all leaves (aka atomic values) stored in a S-expression tree. ```lua function collect(S) -- We store the result in a Lua table local result = {} function loop(S) if S:is_cons() then loop(S:head()) loop(S:tail()) elseif not S:is_nil() then result[#result + 1] = S:fields() end end loop(S) return result end -- Create a simple tree local tree = sexpr(sexpr(1, 5), sexpr(sexpr(4, 3), 5)) local leaves = collect(tree) -- store the leaves in a Lua table assert(#leaves == 5) assert(leaves[1] == 1) assert(leaves[2] == 5) assert(leaves[3] == 4) ``` ## Options Lean components can be configured used _options_ objects. The options can be explicitly provided or read from a global variable. An options object is a non-mutable value based on S-expressions. An options object is essentially a list of pairs, where each pair is a hierarchical name and a value. The following example demonstrates how to create options objects using Lua. ```lua -- Create an options set containing the entries -- pp.colors -> false, -- pp.unicode -> false local o1 = options(name("pp", "colors"), false, name("pp", "unicode"), false) assert(is_options(o1)) print(o1) -- The same example using syntax-sugar for hierarchical names. -- The Lean-Lua API will automatically convert Lua arrays into hierarchical names. local o2 = options({"pp", "colors"}, false, {"pp", "unicode"}, false) print(o2) -- An error is raised if the option is not known. local ok, ex = pcall(function() options({"pp", "foo"}, true) end) assert(not ok) assert(ex:what():find("unknown option 'pp.foo'")) ``` Options objects are non-mutable values. The method `update` returns a new updates options object. ```lua local o1 = options() -- create the empty options assert(o1:empty()) local o2 = o1:update({'pp', 'colors'}, true) assert(o1:empty()) assert(not o2:empty()) assert(o2:size() == 1) assert(o2:get({'pp', 'colors'}) == true) assert(o2:get{'pp', 'colors'} == true) assert(o2:contains{'pp', 'colors'}) assert(not o2:contains{'pp', 'unicode'}) -- We can provide a default value for 'get'. -- The default value is used if the options object does -- not contain the key. assert(o2:get({'pp', 'width'}) == 0) assert(o2:get({'pp', 'width'}, 10) == 10) assert(o2:get({'pp', 'width'}, 20) == 20) local o3 = o2:update({'pp', 'width'}, 100) assert(o3:get({'pp', 'width'}) == 100) assert(o3:get({'pp', 'width'}, 1) == 100) assert(o3:get({'pp', 'width'}, 20) == 100) ``` The functions `get_options` and `set_options` get/set the global options object. For example, the global options object is used by the `print` method. ```lua local o = options({'pp', 'unicode'}, false) set_options(o) assert(get_options():contains{'pp', 'unicode'}) ``` # Universe levels Lean supports universe polymorphism. That is, declaration in Lean can be parametrized by one or more universe level parameters. The declarations can then be instantiated with universe level expressions. In the standard Lean front-end, universe levels can be omitted, and the Lean elaborator (tries) to infer them automatically for users. In this section, we describe the API for creating and using universe level expressions. In Lean, we have a hierarchy of universes: `Type.{0}` : `Type.{1}` : `Type.{2}`, ... We do not assume our universes are cumulative (like Coq). In Lean, when we create an empty environment, we can specify whether `Type.{0}` is impredicative or not. The idea is to be able to use `Type.{0}` to represent the universe of Propositions. In Lean, we have the following kinds of universe level expression: - `Zero` : the universe level expression for representing `Type.{0}`. - `Succ(l)` : the successor of universe level `l`. - `Max(l1, l2)` : the maximum of levels `l1` and `l2`. - `IMax(l1, l2)` : the "impredicative" maximum. It is defined as `IMax(x, y) = Zero` if `y` is `Zero`, and `Max(x, y)` otherwise. - `Param(n)` : a universe level parameter named `n`. - `Global(n)` : a global universe level named `n`. - `Meta(n)` : a meta universe level named `n`. Meta universe levels are used to identify placeholders that must be automatically constructed by Lean. The following example demonstrates how to create universe level expressions using Lua. ```lua local zero = level() -- Create level Zero assert(is_level(zero)) -- zero is a level expression assert(zero:is_zero()) local one = zero + 1 -- Create level One assert(one ~= 1) -- level one is not the constant 1 -- We can also use the API mk_level_succ instead of +1 local two = mk_level_succ(one) -- Create level Two assert(two == one+1) assert(two:is_succ()) -- two is of the kind: successor assert(two:succ_of() == one) -- it is the successor of one local u = mk_global_univ("u") -- u is a reference to global universe level "u" assert(u:is_global()) assert(u:id() == name("u")) -- Retrieve u's name local l = mk_param_univ("l") -- l is a reference to a universe level parameter assert(l:is_param()) assert(l:id() == name("l")) assert(l:id() ~= "l") -- The names are not strings, but hierarchical names assert(l:kind() == level_kind.Param) local m = mk_meta_univ("m") -- Create a meta universe level named "m" assert(m:is_meta()) assert(m:id() == name("m")) print(max_univ(l, u)) -- Create level expression Max(l, u) assert(max_univ(l, u):is_max()) -- The max_univ API applies basic coercions automatically assert(max_univ("l", 1) == max_univ(l, one)) assert(max_univ("l", 1, u) == max_univ(l, max_univ(one, u))) -- The max_univ API applies basic simplifications automatically assert(max_univ(l, l) == l) assert(max_univ(l, zero) == l) assert(max_univ(one, zero) == one) print(imax_univ(l, u)) -- Create level expression IMax(l, u) assert(imax_univ(l, u):is_imax()) -- The imax_univ API also applies basic coercions automatically assert(imax_univ(1, "l") == imax_univ(one, l)) -- The imax_univ API applies basic simplifications automatically assert(imax_univ(l, l) == l) assert(imax_univ(l, zero) == zero) -- It "knows" that u+1 can never be zero assert(imax_univ(l, u+1) == max_univ(l, u+1)) assert(imax_univ(zero, one) == one) assert(imax_univ(one, zero) == zero) -- The methods lhs and rhs deconstruct max and imax expressions assert(max_univ(l, u):lhs() == l) assert(imax_univ(l, u):rhs() == u) -- The method is_not_zero if there if for all assignments -- of the parameters, globals and meta levels, the resultant -- level expression is different from zero. assert((l+1):is_not_zero()) assert(not l:is_not_zero()) assert(max_univ(l+1, u):is_not_zero()) -- The method instantiate replaces parameters with level expressions assert(max_univ(l, u):instantiate({"l"}, {two}) == max_univ(two, u)) local l1 = mk_param_univ("l1") assert(max_univ(l, l1):instantiate({"l", "l1"}, {two, u+1}) == max_univ(two, u+1)) -- The method has_meta returns true, if the given level expression -- contains meta levels assert(max_univ(m, l):has_meta()) assert(not max_univ(u, l):has_meta()) -- The is_eqp method checks for pointer equality local e1 = max_univ(l, u) local e2 = max_univ(l, u) -- e1 and e2 are structurally equal, but are stored in different -- positions in memory. assert(e1 == e2) assert(not e1:is_eqp(e2)) local e3 = e1 -- e1 and e3 are references to the same level expression. assert(e1:is_eqp(e3)) ``` In the previous example, we learned that functions such as `max_univ` apply basic simplifications automatically. However, they do not put the level expressions in any normal form. We can use the method `normalize` for that. The normalization procedure is also use to implement the method `is_equivalent` that returns true when two level expressions are equivalent. The Lua API also contains the method `is_geq` that can be used to check whether a level expression represents a universe bigger than or equal another one. ```lua local zero = level() local l = mk_param_univ("l") local u = mk_global_univ("u") assert(max_univ(l, 1, u+1):is_equivalent(max_univ(u+1, 1, l))) local e1 = max_univ(l, u+1)+1 assert(e1:normalize() == max_univ(l+1, u+2)) -- norm is syntax sugar for normalize assert(e1:norm() == max_univ(l+1, u+2)) assert(e1:is_geq(l)) assert(e1:is_geq(e1)) assert(e1:is_geq(zero)) assert(e1:is_geq(u+2)) assert(e1:is_geq(max_univ(l, u))) ``` We say a universe level is _explicit_ iff it is of the form `succ^k(zero)` ```lua local zero = level() assert(zero:is_explicit()) local two = zero+2 assert(two:is_explicit()) local l = mk_param_univ("l") assert(not l:is_explicit()) ``` The Lua dictionary `level_kind` contains the id for all universe level kinds. ```lua local zero = level() local one = zero+1 local l = mk_param_univ("l") local u = mk_global_univ("u") local m = mk_meta_univ("m") local e1 = max_univ(l, u) local e2 = imax_univ(m, l) assert(zero:kind() == level_kind.Zero) assert(one:kind() == level_kind.Succ) assert(l:kind() == level_kind.Param) assert(u:kind() == level_kind.Global) assert(m:kind() == level_kind.Meta) assert(e1:kind() == level_kind.Max) assert(e2:kind() == level_kind.IMax) ``` # Expressions In Lean, we have the following kind of expressions: constants, function applications, variables, lambdas, dependent function spaces (aka Pis), let expressions, and sorts (aka Type). There are three additional kinds of auxiliary expressions: local constants, metavariables, and macros. ## Constants Constants are essentially references to declarations in the environment. We can create a variable using ```lua local f = mk_constant("f") local a = Const("a") -- Const is an alias for mk_constant assert(is_expr(f)) -- f is an expression assert(f:is_constant()) -- f is a constant ``` Lean supports universe polymorphism. When we define a constant, theorem or axiom, we can use universe level parameters. Thus, if a declaration `g` has two universe level parameters, we instantiate them when we create a reference to `g`. ```lua local zero = level() local one = zero+1 local g01 = mk_constant("g", {zero, one}) ``` The command `mk_constant` automatically applies coercions to level expressions. A numeral `n` is automatically converted into `level()+n`, and a string `s` into `mk_param_univ(s)`. ```lua local g1l = mk_constant("g", {1, "l"}) ``` The method `data()` retrieves the name and universe levels of a constant. ```lua local gl1 = mk_constant("g", {"l", 1}) assert(gl1:is_constant()) local n, ls = gl1:data() assert(n == name("g")) assert(#ls == 2) assert(ls:head() == mk_param_univ("l")) assert(ls:tail():head() == level()+1) ``` ## Function applications In Lean, the expression `f t` is a function application, where `f` is a function that is applied to `t`. ```lua local f = Const("f") local t = Const("t") local a = f(t) -- Creates the term `f t` assert(is_expr(a)) assert(a:is_app()) ``` The method `data()` retrieves the function and argument of an application. The methods `fn()` and `arg()` retrieve the function and argument respectively. ```lua local f = Const("f") local t = Const("t") local a = f(t) assert(a:fn() == f) assert(a:arg() == t) local g, b = a:data() assert(g == f) assert(b == t) ``` As usual, we write `f t s` to denote the expression `((f t) s)`. The Lua API provides a similar convenience. ```lua local f = Const("f") local t = Const("t") local s = Const("s") local a = f(t, s) assert(a:fn() == f(t)) assert(a:fn():fn() == f) assert(a:fn():arg() == t) assert(a:arg() == s) ``` ## Variables Variables are references to local declarations in lambda and Pi expressions. The variables are represented using [de Bruijn indices](http://en.wikipedia.org/wiki/De_Bruijn_index). ```lua local x = mk_var(0) local y = Var(1) -- Var is an alias for mk_var assert(is_expr(x)) assert(x:is_var()) assert(x:data() == 0) assert(y:data() == 1) ``` ## Lambda abstractions Lambda abstraction is a converse operation to function application. Given a variable `x`, a type `A`, and a term `t` that may or may not contain `x`, one can construct the so-called lambda abstraction `fun x : A, t`, or using unicode notation `λ x : A, t`. There are many APIs for creating lambda abstractions in the Lua API. The most basic one is `mk_lambda(x, A, t)`, where `x` is a string or hierarchical name, and `A` and `t` are expressions. ```lua local x = Var(0) local A = Const("A") local id = mk_lambda("x", A, x) -- create the identity function assert(is_expr(id)) assert(id:is_lambda()) ``` As usual, the method `data()` retrieves the "fields" of a lambda abstraction. ```lua -- id is the identity function defined above. local y, B, v = id:data() assert(y == name("x")) assert(B == A) assert(v == Var(0)) ``` We say a variable is _free_ if it is not bound by any lambda (or Pi) abstraction. We say an expression is _closed_ if it does not contain free variables. The method `closed()` return `true` iff the expression is closed. ```lua local f = Const("f") local N = Const("N") assert(not f(Var(0)):closed()) local l1 = mk_lambda("x", N, f(Var(0))) assert(l1:closed()) local l2 = mk_lambda("x", N, f(Var(1))) assert(not l2:closed()) ``` The method `has_free_var(i)` return `true` if the expression contains the free variable `i`. ```lua local f = Const("f") local N = Const("N") assert(f(Var(0)):has_free_var(0)) assert(not f(Var(0)):has_free_var(1)) local l1 = mk_lambda("x", N, f(Var(0))) assert(not l1:has_free_var(0)) local l2 = mk_lambda("x", N, f(Var(1))) assert(l2:has_free_var(0)) assert(not l2:has_free_var(1)) ``` The de Bruijn indices can be lifted and lowered using the methods `lift_free_vars` and `lower_free_vars`. ```lua local f = Const("f") local N = Const("N") assert(f(Var(0)):lift_free_vars(1) == f(Var(1))) assert(f(Var(0)):lift_free_vars(2) == f(Var(2))) -- lift the free variables >= 2 by 3 assert(f(Var(0), Var(2)):lift_free_vars(2, 3) == f(Var(0), Var(5))) assert(f(Var(1)):lower_free_vars(1) == f(Var(0))) assert(f(Var(2)):lower_free_vars(1) == f(Var(1))) -- It is an error to invoke t:lower_free_vars(i) when -- t contains free variables with indices in [0, n). -- In Lua, pcall(fn) stands for protected call, it traps -- any error occurred when executing fn. assert(not pcall(function() f(Var(1)):lower_free_vars(2) end)) -- lower the free variables >= 2 by 1 assert(f(Var(0), Var(2)):lower_free_vars(2, 1) == f(Var(0), Var(1))) ``` It is not convenient to create complicated lambda abstractions using de Bruijn indices. It is usually a very error-prone task. To simplify the creation of lambda abstractions, Lean provides local constants. A local constant is essentially a pair name and expression, where the expression represents the type of the local constant. The API `Fun(c, b)` automatically replace the local constant `c` in `b` with the variable 0. It does all necessary adjustments when `b` contains nested lambda abstractions. The API also provides `Fun({c_1, ..., c_n}, b)` as syntax-sugar for `Fun(c_1, ..., Fun(c_n, b)...)`. ```lua local N = Const("N") local f = Const("f") local c_1 = Local("c_1", N) local c_2 = Local("c_2", N) local c_3 = Local("c_3", N) assert(Fun(c_1, f(c_1)) == mk_lambda("c_1", N, f(Var(0)))) assert(Fun({c_1, c_2}, f(c_1, c_2)) == mk_lambda("c_1", N, mk_lambda("c_2", N, f(Var(1), Var(0))))) assert(Fun({c_1, c_2}, f(c_1, Fun(c_3, f(c_2, c_3)))) == mk_lambda("c_1", N, mk_lambda("c_2", N, f(Var(1), mk_lambda("c_3", N, f(Var(1), Var(0))))))) ```` Binders can be annotated with `hints` for the Lean _elaborator_. For example, we can say a binder is an _implicit argument_, and must be inferred automatically by the elaborator. These annotations are irrelevant from the kernel's point of view, and they are just "propagated" by the Lean type checker. The other annotations are explained later in the Section describing the elaboration engine. ```lua local b = binder_info(true) assert(is_binder_info(b)) assert(b:is_implicit()) local N = Const("N") local f = Const("f") local c1 = Local("c1", N) local c2 = Local("c2", N) -- Create the expression -- fun {c1 : N} (c2 : N), (f c1 c2) -- In Lean, curly braces are used to denote -- implicit arguments local l = Fun({{c1, b}, c2}, f(c1, c2)) local x, T, B, bi = l:data() assert(x == name("c1")) assert(T == N) assert(B == Fun(c2, f(Var(1), c2))) assert(bi:is_implicit()) local y, T, C, bi2 = B:data() assert(not bi2:is_implicit()) ``` We can also use the `Fun` API with regular constants and the desired type. ```lua local N = Const("N") local f = Const("f") local c = Const("c") assert(Fun(c, N, f(c)) == mk_lambda("c", N, f(Var(0)))) local d = Const("d") assert(Fun({{c, N}, {d, N}}, f(c, d)) == mk_lambda("c", N, mk_lambda("d", N, f(Var(1), Var(0))))) ```