import logic open tactic inductive list (A : Type) : Type := nil {} : list A, cons : A → list A → list A definition is_nil {A : Type} (l : list A) : Prop := list.rec true (fun h t r, false) l theorem is_nil_nil (A : Type) : is_nil (@nil A) := eq_true_elim (refl true) theorem cons_ne_nil {A : Type} (a : A) (l : list A) : ¬ cons a l = nil := not_intro (assume H : cons a l = nil, absurd (calc true = is_nil (@nil A) : refl _ ... = is_nil (cons a l) : { symm H } ... = false : refl _) true_ne_false) theorem T : is_nil (@nil Prop) := by apply is_nil_nil (* local list = Const("list", {1})(Prop) local isNil = Const("is_nil", {1})(Prop) local Nil = Const("nil", {1})(Prop) local m = mk_metavar("m", list) print(isNil(Nil)) print(isNil(m)) function test_unify(env, m, lhs, rhs, num_s) print(tostring(lhs) .. " =?= " .. tostring(rhs) .. ", expected: " .. tostring(num_s)) local ss = unify(env, lhs, rhs, name_generator(), substitution()) local n = 0 for s in ss do print("solution: " .. tostring(s:instantiate(m))) n = n + 1 end if num_s ~= n then print("n: " .. n) end assert(num_s == n) end print("=====================") test_unify(get_env(), m, isNil(Nil), isNil(m), 2) *)