-- Copyright (c) 2014 Floris van Doorn. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Floris van Doorn open eq truncation structure precategory [class] (ob : Type) : Type := (hom : ob → ob → Type) (homH : Π {a b : ob}, is_hset (hom a b)) (comp : Π⦃a b c : ob⦄, hom b c → hom a b → hom a c) (ID : Π (a : ob), hom a a) (assoc : Π ⦃a b c d : ob⦄ (h : hom c d) (g : hom b c) (f : hom a b), comp h (comp g f) = comp (comp h g) f) (id_left : Π ⦃a b : ob⦄ (f : hom a b), comp !ID f = f) (id_right : Π ⦃a b : ob⦄ (f : hom a b), comp f !ID = f) attribute precategory [multiple-instances] namespace precategory variables {ob : Type} [C : precategory ob] variables {a b c d : ob} include C attribute homH [instance] definition compose := comp definition id [reducible] {a : ob} : hom a a := ID a infixr `∘` := compose infixl `⟶`:25 := hom -- input ⟶ using \--> (this is a different arrow than \-> (→)) variables {h : hom c d} {g : hom b c} {f : hom a b} {i : hom a a} --the following is the only theorem for which "include C" is necessary if C is a variable (why?) theorem id_compose (a : ob) : (ID a) ∘ id = id := !id_left theorem left_id_unique (H : Π{b} {f : hom b a}, i ∘ f = f) : i = id := calc i = i ∘ id : id_right ... = id : H theorem right_id_unique (H : Π{b} {f : hom a b}, f ∘ i = f) : i = id := calc i = id ∘ i : id_left ... = id : H end precategory inductive Precategory : Type := mk : Π (ob : Type), precategory ob → Precategory namespace precategory definition Mk {ob} (C) : Precategory := Precategory.mk ob C definition MK (a b c d e f g h) : Precategory := Precategory.mk a (precategory.mk b c d e f g h) definition objects [coercion] [reducible] (C : Precategory) : Type := Precategory.rec (fun c s, c) C definition category_instance [instance] [coercion] [reducible] (C : Precategory) : precategory (objects C) := Precategory.rec (fun c s, s) C end precategory open precategory theorem Precategory.equal (C : Precategory) : Precategory.mk C C = C := Precategory.rec (λ ob c, idp) C