/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn Declaration of the n-spheres -/ import .suspension types.trunc open eq nat suspension bool is_trunc unit pointed /- We can define spheres with the following possible indices: - trunc_index (defining S^-2 = S^-1 = empty) - nat (forgetting that S^1 = empty) - nat, but counting wrong (S^0 = empty, S^1 = bool, ...) - some new type "integers >= -1" We choose the last option here. -/ /- Sphere levels -/ inductive sphere_index : Type₀ := | minus_one : sphere_index | succ : sphere_index → sphere_index namespace trunc_index definition sub_one [reducible] (n : sphere_index) : trunc_index := sphere_index.rec_on n -2 (λ n k, k.+1) postfix `.-1`:(max+1) := sub_one end trunc_index namespace sphere_index /- notation for sphere_index is -1, 0, 1, ... from 0 and up this comes from a coercion from num to sphere_index (via nat) -/ postfix `.+1`:(max+1) := sphere_index.succ postfix `.+2`:(max+1) := λ(n : sphere_index), (n .+1 .+1) notation `-1` := minus_one export [coercions] nat definition add (n m : sphere_index) : sphere_index := sphere_index.rec_on m n (λ k l, l .+1) definition leq (n m : sphere_index) : Type₀ := sphere_index.rec_on n (λm, unit) (λ n p m, sphere_index.rec_on m (λ p, empty) (λ m q p, p m) p) m infix `+1+`:65 := sphere_index.add notation x <= y := sphere_index.leq x y notation x ≤ y := sphere_index.leq x y definition succ_le_succ {n m : sphere_index} (H : n ≤ m) : n.+1 ≤ m.+1 := H definition le_of_succ_le_succ {n m : sphere_index} (H : n.+1 ≤ m.+1) : n ≤ m := H definition minus_two_le (n : sphere_index) : -1 ≤ n := star definition empty_of_succ_le_minus_two {n : sphere_index} (H : n .+1 ≤ -1) : empty := H definition of_nat [coercion] [reducible] (n : nat) : sphere_index := (nat.rec_on n -1 (λ n k, k.+1)).+1 definition trunc_index_of_sphere_index [coercion] [reducible] (n : sphere_index) : trunc_index := (sphere_index.rec_on n -2 (λ n k, k.+1)).+1 definition sub_one [reducible] (n : ℕ) : sphere_index := nat.rec_on n -1 (λ n k, k.+1) postfix `.-1`:(max+1) := sub_one open trunc_index definition sub_two_eq_sub_one_sub_one (n : ℕ) : n.-2 = n.-1.-1 := nat.rec_on n idp (λn p, ap trunc_index.succ p) end sphere_index open sphere_index equiv definition sphere : sphere_index → Type₀ | -1 := empty | n.+1 := suspension (sphere n) namespace sphere definition base {n : ℕ} : sphere n := !north definition pointed_sphere [instance] [constructor] (n : ℕ) : pointed (sphere n) := pointed.mk base definition Sphere [constructor] (n : ℕ) : Pointed := pointed.mk' (sphere n) namespace ops abbreviation S := sphere notation `S.` := Sphere end ops open sphere.ops definition bool_of_sphere [reducible] : S 0 → bool := suspension.rec ff tt (λx, empty.elim x) definition sphere_of_bool [reducible] : bool → S 0 | ff := !north | tt := !south definition sphere_equiv_bool : S 0 ≃ bool := equiv.MK bool_of_sphere sphere_of_bool (λb, match b with | tt := idp | ff := idp end) (λx, suspension.rec_on x idp idp (empty.rec _)) definition sphere_eq_bool : S 0 = bool := ua sphere_equiv_bool definition sphere_eq_bool_pointed : S. 0 = Bool := Pointed_eq sphere_equiv_bool idp definition pointed_map_sphere (A : Pointed) (n : ℕ) : map₊ (S. n) A ≃ Ω[n] A := begin revert A, induction n with n IH, { intro A, rewrite [sphere_eq_bool_pointed], apply pointed_map_bool_equiv}, { intro A, transitivity _, apply suspension_adjoint_loop (S. n) A, apply IH} end end sphere open sphere sphere.ops structure weakly_constant [class] {A B : Type} (f : A → B) := --move (is_constant : Πa a', f a = f a') namespace trunc open trunc_index definition is_trunc_of_pointed_map_sphere_constant (n : ℕ) (A : Type) (H : Π(a : A) (f : map₊ (S. n) (pointed.Mk a)) (x : S n), f x = f base) : is_trunc (n.-2.+1) A := begin apply iff.elim_right !is_trunc_iff_is_contr_loop, intro a, apply is_trunc_equiv_closed, apply pointed_map_sphere, fapply is_contr.mk, { exact pointed_map.mk (λx, a) idp}, { intro f, fapply pointed_map_eq, { intro x, esimp, refine !respect_pt⁻¹ ⬝ (!H ⬝ !H⁻¹)}, { rewrite [▸*,con.right_inv,▸*,con.left_inv]}} end definition is_trunc_iff_map_sphere_constant (n : ℕ) (A : Type) (H : Π(f : S n → A) (x : S n), f x = f base) : is_trunc (n.-2.+1) A := begin apply is_trunc_of_pointed_map_sphere_constant, intros, cases f with f p, esimp at *, apply H end end trunc