Variable f {A : Type} (a b : A) : A. Check f 10 true Variable g {A B : Type} (a : A) : A. Check g 10 Variable h : Pi (A : Type), A -> A. Check fun x, fun A : Type, h A x Variable eq : Pi A : Type, A -> A -> Bool. Check fun (A B : Type) (a : _) (b : _) (C : Type), eq C a b. Variable a : Bool Variable b : Bool Variable H : a /\ b Theorem t1 : b := Discharge (fun H1, Conj H1 (Conjunct1 H)). Theorem t2 : a = b := Trans (Refl a) (Refl b). Check f Bool Bool. Theorem pierce (a b : Bool) : ((a ⇒ b) ⇒ a) ⇒ a := Discharge (λ H, DisjCases (EM a) (λ H_a, H) (λ H_na, NotImp1 (MT H H_na)))