-- Copyright (c) 2014 Jakob von Raumer. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Authors: Floris van Doorn, Jakob von Raumer import .basic .morphism types.sigma open eq precategory sigma sigma.ops equiv is_equiv function truncation open prod namespace morphism variables {ob : Type} [C : precategory ob] include C variables {a b c : ob} {g : b ⟶ c} {f : a ⟶ b} {h : b ⟶ a} -- "is_iso f" is equivalent to a certain sigma type protected definition sigma_char (f : hom a b) : (Σ (g : hom b a), (g ∘ f = id) × (f ∘ g = id)) ≃ is_iso f := begin fapply (equiv.mk), intro S, apply is_iso.mk, exact (pr₁ S.2), exact (pr₂ S.2), fapply adjointify, intro H, apply (is_iso.rec_on H), intros (g, η, ε), exact (sigma.mk g (pair η ε)), intro H, apply (is_iso.rec_on H), intros (g, η, ε), apply idp, intro S, apply (sigma.rec_on S), intros (g, ηε), apply (prod.rec_on ηε), intros (η, ε), apply idp, end -- The structure for isomorphism can be characterized up to equivalence -- by a sigma type. definition sigma_is_iso_equiv ⦃a b : ob⦄ : (Σ (f : hom a b), is_iso f) ≃ (a ≅ b) := begin fapply (equiv.mk), intro S, apply isomorphic.mk, apply (S.2), fapply adjointify, intro p, apply (isomorphic.rec_on p), intros (f, H), exact (sigma.mk f H), intro p, apply (isomorphic.rec_on p), intros (f, H), apply idp, intro S, apply (sigma.rec_on S), intros (f, H), apply idp, end -- The statement "f is an isomorphism" is a mere proposition definition is_hprop_of_is_iso : is_hset (is_iso f) := begin apply trunc_equiv, apply (equiv.to_is_equiv (!sigma_char)), apply trunc_sigma, apply (!homH), intro g, apply trunc_prod, repeat (apply succ_is_trunc; apply trunc_succ; apply (!homH)), end -- The type of isomorphisms between two objects is a set definition is_hset_iso : is_hset (a ≅ b) := begin apply trunc_equiv, apply (equiv.to_is_equiv (!sigma_is_iso_equiv)), apply trunc_sigma, apply homH, intro f, apply is_hprop_of_is_iso, end -- In a precategory, equal objects are isomorphic definition iso_of_path (p : a = b) : isomorphic a b := eq.rec_on p (isomorphic.mk id) end morphism