/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: init.nat Authors: Floris van Doorn, Leonardo de Moura -/ prelude import init.wf init.tactic open eq.ops decidable namespace nat notation `ℕ` := nat inductive lt (a : nat) : nat → Prop := base : lt a (succ a), step : Π {b}, lt a b → lt a (succ b) notation a < b := lt a b definition le (a b : nat) : Prop := a < succ b notation a ≤ b := le a b definition pred (a : nat) : nat := cases_on a zero (λ a₁, a₁) protected definition is_inhabited [instance] : inhabited nat := inhabited.mk zero protected definition has_decidable_eq [instance] : decidable_eq nat := λn m : nat, have general : ∀n, decidable (n = m), from rec_on m (λ n, cases_on n (inl rfl) (λ m, inr (λ (e : succ m = zero), no_confusion e))) (λ (m' : nat) (ih : ∀n, decidable (n = m')) (n : nat), cases_on n (inr (λ h, no_confusion h)) (λ (n' : nat), decidable.rec_on (ih n') (assume Heq : n' = m', inl (eq.rec_on Heq rfl)) (assume Hne : n' ≠ m', have H1 : succ n' ≠ succ m', from assume Heq, no_confusion Heq (λ e : n' = m', Hne e), inr H1))), general n -- less-than is well-founded definition lt.wf [instance] : well_founded lt := well_founded.intro (λn, rec_on n (acc.intro zero (λ (y : nat) (hlt : y < zero), have aux : ∀ {n₁}, y < n₁ → zero = n₁ → acc lt y, from λ n₁ hlt, lt.cases_on hlt (λ heq, no_confusion heq) (λ b hlt heq, no_confusion heq), aux hlt rfl)) (λ (n : nat) (ih : acc lt n), acc.intro (succ n) (λ (m : nat) (hlt : m < succ n), have aux : ∀ {n₁} (hlt : m < n₁), succ n = n₁ → acc lt m, from λ n₁ hlt, lt.cases_on hlt (λ (heq : succ n = succ m), nat.no_confusion heq (λ (e : n = m), eq.rec_on e ih)) (λ b (hlt : m < b) (heq : succ n = succ b), nat.no_confusion heq (λ (e : n = b), acc.inv (eq.rec_on e ih) hlt)), aux hlt rfl))) definition measure {A : Type} (f : A → nat) : A → A → Prop := inv_image lt f definition measure.wf {A : Type} (f : A → nat) : well_founded (measure f) := inv_image.wf f lt.wf definition not_lt_zero (a : nat) : ¬ a < zero := have aux : ∀ {b}, a < b → b = zero → false, from λ b H, lt.cases_on H (λ heq, nat.no_confusion heq) (λ b h₁ heq, nat.no_confusion heq), λ H, aux H rfl definition zero_lt_succ (a : nat) : zero < succ a := rec_on a (lt.base zero) (λ a (hlt : zero < succ a), lt.step hlt) definition lt.trans {a b c : nat} (H₁ : a < b) (H₂ : b < c) : a < c := have aux : ∀ {d}, d < c → b = d → a < b → a < c, from (λ d H, lt.rec_on H (λ h₁ h₂, lt.step (eq.rec_on h₁ h₂)) (λ b hl ih h₁ h₂, lt.step (ih h₁ h₂))), aux H₂ rfl H₁ definition succ_lt_succ {a b : nat} (H : a < b) : succ a < succ b := lt.rec_on H (lt.base (succ a)) (λ b hlt ih, lt.trans ih (lt.base (succ b))) definition lt_of_succ_lt {a b : nat} (H : succ a < b) : a < b := have aux : ∀ {a₁}, a₁ < b → succ a = a₁ → a < b, from λ a₁ H, lt.rec_on H (λ e₁, eq.rec_on e₁ (lt.step (lt.base a))) (λ d hlt ih e₁, lt.step (ih e₁)), aux H rfl definition lt_of_succ_lt_succ {a b : nat} (H : succ a < succ b) : a < b := have aux : pred (succ a) < pred (succ b), from lt.rec_on H (lt.base a) (λ (b : nat) (hlt : succ a < b) ih, show pred (succ a) < pred (succ b), from lt_of_succ_lt hlt), aux definition lt.is_decidable_rel [instance] : decidable_rel lt := λ a b, rec_on b (λ (a : nat), inr (not_lt_zero a)) (λ (b₁ : nat) (ih : ∀ a, decidable (a < b₁)) (a : nat), cases_on a (inl !zero_lt_succ) (λ a, decidable.rec_on (ih a) (λ h_pos : a < b₁, inl (succ_lt_succ h_pos)) (λ h_neg : ¬ a < b₁, have aux : ¬ succ a < succ b₁, from λ h : succ a < succ b₁, h_neg (lt_of_succ_lt_succ h), inr aux))) a definition le.refl (a : nat) : a ≤ a := lt.base a definition le_of_lt {a b : nat} (H : a < b) : a ≤ b := lt.step H definition eq_or_lt_of_le {a b : nat} (H : a ≤ b) : a = b ∨ a < b := begin cases H with (b, hlt), apply (or.inl rfl), apply (or.inr hlt) end definition le_of_eq_or_lt {a b : nat} (H : a = b ∨ a < b) : a ≤ b := or.rec_on H (λ hl, eq.rec_on hl !le.refl) (λ hr, le_of_lt hr) definition le.is_decidable_rel [instance] : decidable_rel le := λ a b, decidable_of_decidable_of_iff _ (iff.intro le_of_eq_or_lt eq_or_lt_of_le) definition le.rec_on {a : nat} {P : nat → Prop} {b : nat} (H : a ≤ b) (H₁ : P a) (H₂ : ∀ b, a < b → P b) : P b := begin cases H with (b', hlt), apply H₁, apply (H₂ b' hlt) end definition lt.irrefl (a : nat) : ¬ a < a := rec_on a !not_lt_zero (λ (a : nat) (ih : ¬ a < a) (h : succ a < succ a), ih (lt_of_succ_lt_succ h)) definition lt.asymm {a b : nat} (H : a < b) : ¬ b < a := lt.rec_on H (λ h : succ a < a, !lt.irrefl (lt_of_succ_lt h)) (λ b hlt (ih : ¬ b < a) (h : succ b < a), ih (lt_of_succ_lt h)) definition lt.trichotomy (a b : nat) : a < b ∨ a = b ∨ b < a := rec_on b (λa, cases_on a (or.inr (or.inl rfl)) (λ a₁, or.inr (or.inr !zero_lt_succ))) (λ b₁ (ih : ∀a, a < b₁ ∨ a = b₁ ∨ b₁ < a) (a : nat), cases_on a (or.inl !zero_lt_succ) (λ a, or.rec_on (ih a) (λ h : a < b₁, or.inl (succ_lt_succ h)) (λ h, or.rec_on h (λ h : a = b₁, or.inr (or.inl (eq.rec_on h rfl))) (λ h : b₁ < a, or.inr (or.inr (succ_lt_succ h)))))) a definition eq_or_lt_of_not_lt {a b : nat} (hnlt : ¬ a < b) : a = b ∨ b < a := or.rec_on (lt.trichotomy a b) (λ hlt, absurd hlt hnlt) (λ h, h) definition lt_succ_of_le {a b : nat} (h : a ≤ b) : a < succ b := h definition lt_of_succ_le {a b : nat} (h : succ a ≤ b) : a < b := lt_of_succ_lt_succ h definition le_succ_of_le {a b : nat} (h : a ≤ b) : a ≤ succ b := lt.step h definition succ_le_of_lt {a b : nat} (h : a < b) : succ a ≤ b := succ_lt_succ h definition le.trans {a b c : nat} (h₁ : a ≤ b) (h₂ : b ≤ c) : a ≤ c := begin cases h₁ with (b', hlt), apply h₂, apply (lt.trans hlt h₂) end definition lt_of_le_of_lt {a b c : nat} (h₁ : a ≤ b) (h₂ : b < c) : a < c := begin cases h₁ with (b', hlt), apply h₂, apply (lt.trans hlt h₂) end definition lt_of_lt_of_le {a b c : nat} (h₁ : a < b) (h₂ : b ≤ c) : a < c := begin cases h₁ with (b', hlt), apply (lt_of_succ_lt_succ h₂), apply (lt.trans hlt (lt_of_succ_lt_succ h₂)) end definition lt_of_lt_of_eq {a b c : nat} (h₁ : a < b) (h₂ : b = c) : a < c := eq.rec_on h₂ h₁ definition le_of_le_of_eq {a b c : nat} (h₁ : a ≤ b) (h₂ : b = c) : a ≤ c := eq.rec_on h₂ h₁ definition lt_of_eq_of_lt {a b c : nat} (h₁ : a = b) (h₂ : b < c) : a < c := eq.rec_on (eq.rec_on h₁ rfl) h₂ definition le_of_eq_of_le {a b c : nat} (h₁ : a = b) (h₂ : b ≤ c) : a ≤ c := eq.rec_on (eq.rec_on h₁ rfl) h₂ calc_trans lt.trans calc_trans lt_of_le_of_lt calc_trans lt_of_lt_of_le calc_trans lt_of_lt_of_eq calc_trans lt_of_eq_of_lt calc_trans le.trans calc_trans le_of_le_of_eq calc_trans le_of_eq_of_le definition max (a b : nat) : nat := if a < b then b else a definition min (a b : nat) : nat := if a < b then a else b definition max_a_a (a : nat) : a = max a a := eq.rec_on !if_t_t rfl definition max.eq_right {a b : nat} (H : a < b) : max a b = b := if_pos H definition max.eq_left {a b : nat} (H : ¬ a < b) : max a b = a := if_neg H definition max.right_eq {a b : nat} (H : a < b) : b = max a b := eq.rec_on (max.eq_right H) rfl definition max.left_eq {a b : nat} (H : ¬ a < b) : a = max a b := eq.rec_on (max.eq_left H) rfl definition max.left (a b : nat) : a ≤ max a b := by_cases (λ h : a < b, le_of_lt (eq.rec_on (max.right_eq h) h)) (λ h : ¬ a < b, eq.rec_on (max.eq_left h) !le.refl) definition max.right (a b : nat) : b ≤ max a b := by_cases (λ h : a < b, eq.rec_on (max.eq_right h) !le.refl) (λ h : ¬ a < b, or.rec_on (eq_or_lt_of_not_lt h) (λ heq, eq.rec_on heq (eq.rec_on (max_a_a a) !le.refl)) (λ h : b < a, have aux : a = max a b, from max.left_eq (lt.asymm h), eq.rec_on aux (le_of_lt h))) definition gt a b := lt b a notation a > b := gt a b definition ge a b := le b a notation a ≥ b := ge a b definition add (a b : nat) : nat := rec_on b a (λ b₁ r, succ r) notation a + b := add a b definition sub (a b : nat) : nat := rec_on b a (λ b₁ r, pred r) notation a - b := sub a b definition mul (a b : nat) : nat := rec_on b zero (λ b₁ r, r + a) notation a * b := mul a b definition succ_sub_succ_eq_sub (a b : nat) : succ a - succ b = a - b := induction_on b rfl (λ b₁ (ih : succ a - succ b₁ = a - b₁), eq.rec_on ih (eq.refl (pred (succ a - succ b₁)))) definition sub_eq_succ_sub_succ (a b : nat) : a - b = succ a - succ b := eq.rec_on (succ_sub_succ_eq_sub a b) rfl definition zero_sub_eq_zero (a : nat) : zero - a = zero := induction_on a rfl (λ a₁ (ih : zero - a₁ = zero), eq.rec_on ih (eq.refl (pred (zero - a₁)))) definition zero_eq_zero_sub (a : nat) : zero = zero - a := eq.rec_on (zero_sub_eq_zero a) rfl definition sub_lt {a b : nat} : zero < a → zero < b → a - b < a := have aux : Π {a}, zero < a → Π {b}, zero < b → a - b < a, from λa h₁, lt.rec_on h₁ (λb h₂, lt.cases_on h₂ (lt.base zero) (λ b₁ bpos, eq.rec_on (sub_eq_succ_sub_succ zero b₁) (eq.rec_on (zero_eq_zero_sub b₁) (lt.base zero)))) (λa₁ apos ih b h₂, lt.cases_on h₂ (lt.base a₁) (λ b₁ bpos, eq.rec_on (sub_eq_succ_sub_succ a₁ b₁) (lt.trans (@ih b₁ bpos) (lt.base a₁)))), λ h₁ h₂, aux h₁ h₂ definition pred_le (a : nat) : pred a ≤ a := cases_on a (le.refl zero) (λ a₁, le_of_lt (lt.base a₁)) definition sub_le (a b : nat) : a - b ≤ a := induction_on b (le.refl a) (λ b₁ ih, le.trans !pred_le ih) definition of_num [coercion] [reducible] (n : num) : ℕ := num.rec zero (λ n, pos_num.rec (succ zero) (λ n r, r + r + (succ zero)) (λ n r, r + r) n) n end nat