/- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Jeremy Avigad Cardinality calculations for finite sets. -/ import data.finset.to_set data.set.function open nat eq.ops namespace finset variables {A B : Type} variables [deceqA : decidable_eq A] [deceqB : decidable_eq B] include deceqA theorem card_add_card (s₁ s₂ : finset A) : card s₁ + card s₂ = card (s₁ ∪ s₂) + card (s₁ ∩ s₂) := finset.induction_on s₂ (show card s₁ + card ∅ = card (s₁ ∪ ∅) + card (s₁ ∩ ∅), by rewrite [union_empty, card_empty, inter_empty]) (take s₂ a, assume ans2: a ∉ s₂, assume IH : card s₁ + card s₂ = card (s₁ ∪ s₂) + card (s₁ ∩ s₂), show card s₁ + card (insert a s₂) = card (s₁ ∪ (insert a s₂)) + card (s₁ ∩ (insert a s₂)), from decidable.by_cases (assume as1 : a ∈ s₁, assert H : a ∉ s₁ ∩ s₂, from assume H', ans2 (mem_of_mem_inter_right H'), begin rewrite [card_insert_of_not_mem ans2, union.comm, -insert_union, union.comm], rewrite [insert_union, insert_eq_of_mem as1, insert_eq, inter.distrib_left, inter.comm], rewrite [singleton_inter_of_mem as1, -insert_eq, card_insert_of_not_mem H, -*add.assoc], rewrite IH end) (assume ans1 : a ∉ s₁, assert H : a ∉ s₁ ∪ s₂, from assume H', or.elim (mem_or_mem_of_mem_union H') (assume as1, ans1 as1) (assume as2, ans2 as2), begin rewrite [card_insert_of_not_mem ans2, union.comm, -insert_union, union.comm], rewrite [card_insert_of_not_mem H, insert_eq, inter.distrib_left, inter.comm], rewrite [singleton_inter_of_not_mem ans1, empty_union, add.right_comm], rewrite [-add.assoc, IH] end)) theorem card_union (s₁ s₂ : finset A) : card (s₁ ∪ s₂) = card s₁ + card s₂ - card (s₁ ∩ s₂) := calc card (s₁ ∪ s₂) = card (s₁ ∪ s₂) + card (s₁ ∩ s₂) - card (s₁ ∩ s₂) : add_sub_cancel ... = card s₁ + card s₂ - card (s₁ ∩ s₂) : card_add_card theorem card_union_of_disjoint {s₁ s₂ : finset A} (H : disjoint s₁ s₂) : card (s₁ ∪ s₂) = card s₁ + card s₂ := by rewrite [card_union, ↑disjoint at H, inter_empty_of_disjoint H] theorem card_le_card_of_subset {s₁ s₂ : finset A} (H : s₁ ⊆ s₂) : card s₁ ≤ card s₂ := have H1 : disjoint s₁ (s₂ \ s₁), from disjoint.intro (take x, assume H1 H2, not_mem_of_mem_diff H2 H1), calc card s₂ = card (s₁ ∪ (s₂ \ s₁)) : union_diff_cancel H ... = card s₁ + card (s₂ \ s₁) : card_union_of_disjoint H1 ... ≥ card s₁ : le_add_right section card_image open set include deceqB theorem card_image_eq_of_inj_on {f : A → B} {s : finset A} : inj_on f (ts s) → card (image f s) = card s := finset.induction_on s (assume H : inj_on f (ts empty), calc card (image f empty) = 0 : card_empty ... = card empty : card_empty) (take t a, assume H : a ∉ t, assume IH : inj_on f (ts t) → card (image f t) = card t, assume H1 : inj_on f (ts (insert a t)), have H2 : ts t ⊆ ts (insert a t), by rewrite [-subset_eq_to_set_subset]; apply subset_insert, have H3 : card (image f t) = card t, from IH (inj_on_of_inj_on_of_subset H1 H2), have H4 : f a ∉ image f t, proof assume H5 : f a ∈ image f t, obtain x (H6l : x ∈ t) (H6r : f x = f a), from exists_of_mem_image H5, have H7 : x = a, from H1 (mem_insert_of_mem _ H6l) !mem_insert H6r, show false, from H (H7 ▸ H6l) qed, calc card (image f (insert a t)) = card (insert (f a) (image f t)) : image_insert ... = card (image f t) + 1 : card_insert_of_not_mem H4 ... = card t + 1 : H3 ... = card (insert a t) : card_insert_of_not_mem H) end card_image end finset