Set: pp::colors Set: pp::unicode Imported 'tactic' Assumed: list Assumed: nil Assumed: cons Assumed: map Assumed: map_cons Assumed: map_nil Visit, depth: 1 Visit, depth: 2 Step: 2 Visit, depth: 2 Visit, depth: 3 Step: 3 Visit, depth: 3 Visit, depth: 4 Visit, depth: 5 Visit, depth: 5 Step: 5 Visit, depth: 5 Step: 4 Step: 3 Visit, depth: 3 Visit, depth: 4 Step: 4 Visit, depth: 4 Visit, depth: 4 Visit, depth: 5 Visit, depth: 5 Visit, depth: 6 Step: 6 Step: 5 Step: 4 Step: 3 Rewrite using: map_cons map (λ x : ℕ, x + 1) (cons 1 (cons 2 nil)) ===> cons ((λ x : ℕ, x + 1) 1) (map (λ x : ℕ, x + 1) (cons 2 nil)) Visit, depth: 3, cons ((λ x : ℕ, x + 1) 1) (map (λ x : ℕ, x + 1) (cons 2 nil)) Visit, depth: 4, (λ x : ℕ, x + 1) 1 Visit, depth: 5, 1 Visit, depth: 5, 2 Step: (λ x : ℕ, x + 1) 1 ===> 2 Visit, depth: 4, map (λ x : ℕ, x + 1) (cons 2 nil) Rewrite using: map_cons map (λ x : ℕ, x + 1) (cons 2 nil) ===> cons ((λ x : ℕ, x + 1) 2) (map (λ x : ℕ, x + 1) nil) Visit, depth: 5, cons ((λ x : ℕ, x + 1) 2) (map (λ x : ℕ, x + 1) nil) Visit, depth: 6, (λ x : ℕ, x + 1) 2 Visit, depth: 7, 2 Visit, depth: 7, 3 Step: (λ x : ℕ, x + 1) 2 ===> 3 Visit, depth: 6, map (λ x : ℕ, x + 1) nil Rewrite using: map_nil map (λ x : ℕ, x + 1) nil ===> nil Step: map (λ x : ℕ, x + 1) nil ===> nil Visit, depth: 6, cons 3 nil Visit, depth: 7, 3 Step: cons 3 nil ===> cons 3 nil Step: cons ((λ x : ℕ, x + 1) 2) (map (λ x : ℕ, x + 1) nil) ===> cons 3 nil Step: map (λ x : ℕ, x + 1) (cons 2 nil) ===> cons 3 nil Visit, depth: 4, cons 2 (cons 3 nil) Visit, depth: 5, 2 Step: cons 2 (cons 3 nil) ===> cons 2 (cons 3 nil) Step: cons ((λ x : ℕ, x + 1) 1) (map (λ x : ℕ, x + 1) (cons 2 nil)) ===> cons 2 (cons 3 nil) Step: map (λ x : ℕ, x + 1) (cons 1 (cons 2 nil)) ===> cons 2 (cons 3 nil) Rewrite using: eq_id cons 2 (cons 3 nil) = cons 2 (cons 3 nil) ===> ⊤ Visit, depth: 2, ⊤ Step: ⊤ ===> ⊤ Step: map (λ x : ℕ, x + 1) (cons 1 (cons 2 nil)) = cons 2 (cons 3 nil) ===> ⊤ Proved: T1