/- Copyright (c) 2014 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Floris van Doorn, Leonardo de Moura -/ import data.nat data.list data.fin open nat prod fin inductive vector (A : Type) : nat → Type := | nil {} : vector A zero | cons : Π {n}, A → vector A n → vector A (succ n) namespace vector notation a :: b := cons a b notation `[` l:(foldr `,` (h t, cons h t) nil `]`) := l variables {A B C : Type} protected definition is_inhabited [instance] [h : inhabited A] : ∀ (n : nat), inhabited (vector A n) | 0 := inhabited.mk [] | (n+1) := inhabited.mk (inhabited.value h :: inhabited.value (is_inhabited n)) theorem vector0_eq_nil : ∀ (v : vector A 0), v = [] | [] := rfl definition head : Π {n : nat}, vector A (succ n) → A | n (a::v) := a definition tail : Π {n : nat}, vector A (succ n) → vector A n | n (a::v) := v theorem head_cons {n : nat} (h : A) (t : vector A n) : head (h :: t) = h := rfl theorem tail_cons {n : nat} (h : A) (t : vector A n) : tail (h :: t) = t := rfl theorem eta : ∀ {n : nat} (v : vector A (succ n)), head v :: tail v = v | n (a::v) := rfl definition last : Π {n : nat}, vector A (succ n) → A | last [a] := a | last (a::v) := last v theorem last_singleton (a : A) : last [a] = a := rfl theorem last_cons {n : nat} (a : A) (v : vector A (succ n)) : last (a :: v) = last v := rfl definition const : Π (n : nat), A → vector A n | 0 a := [] | (succ n) a := a :: const n a theorem head_const (n : nat) (a : A) : head (const (succ n) a) = a := rfl theorem last_const : ∀ (n : nat) (a : A), last (const (succ n) a) = a | 0 a := rfl | (n+1) a := last_const n a definition nth : Π {n : nat}, vector A n → fin n → A | ⌞n+1⌟ (h :: t) (fz n) := h | ⌞n+1⌟ (h :: t) (fs f) := nth t f definition tabulate : Π {n : nat}, (fin n → A) → vector A n | 0 f := [] | (n+1) f := f (fz n) :: tabulate (λ i : fin n, f (fs i)) theorem nth_tabulate : ∀ {n : nat} (f : fin n → A) (i : fin n), nth (tabulate f) i = f i | (n+1) f (fz n) := rfl | (n+1) f (fs i) := begin change (nth (tabulate (λ i : fin n, f (fs i))) i = f (fs i)), rewrite nth_tabulate end definition map (f : A → B) : Π {n : nat}, vector A n → vector B n | map [] := [] | map (a::v) := f a :: map v theorem map_nil (f : A → B) : map f [] = [] := rfl theorem map_cons {n : nat} (f : A → B) (h : A) (t : vector A n) : map f (h :: t) = f h :: map f t := rfl theorem nth_map (f : A → B) : ∀ {n : nat} (v : vector A n) (i : fin n), nth (map f v) i = f (nth v i) | (succ n) (h :: t) (fz n) := rfl | (succ n) (h :: t) (fs i) := begin change (nth (map f t) i = f (nth t i)), rewrite nth_map end definition map2 (f : A → B → C) : Π {n : nat}, vector A n → vector B n → vector C n | map2 [] [] := [] | map2 (a::va) (b::vb) := f a b :: map2 va vb theorem map2_nil (f : A → B → C) : map2 f [] [] = [] := rfl theorem map2_cons {n : nat} (f : A → B → C) (h₁ : A) (h₂ : B) (t₁ : vector A n) (t₂ : vector B n) : map2 f (h₁ :: t₁) (h₂ :: t₂) = f h₁ h₂ :: map2 f t₁ t₂ := rfl definition append : Π {n m : nat}, vector A n → vector A m → vector A (n ⊕ m) | 0 m [] w := w | (succ n) m (a::v) w := a :: (append v w) theorem nil_append {n : nat} (v : vector A n) : append [] v = v := rfl theorem append_cons {n m : nat} (h : A) (t : vector A n) (v : vector A m) : append (h::t) v = h :: (append t v) := rfl theorem append_nil : Π {n : nat} (v : vector A n), append v [] == v | 0 [] := !heq.refl | (n+1) (h::t) := begin change (h :: append t [] == h :: t), have H₁ : append t [] == t, from append_nil t, revert H₁, generalize (append t []), rewrite [-add_eq_addl, add_zero], intro w H₁, rewrite [heq.to_eq H₁], apply heq.refl end theorem map_append (f : A → B) : ∀ {n m : nat} (v : vector A n) (w : vector A m), map f (append v w) = append (map f v) (map f w) | 0 m [] w := rfl | (n+1) m (h :: t) w := begin change (f h :: map f (append t w) = f h :: append (map f t) (map f w)), rewrite map_append end definition unzip : Π {n : nat}, vector (A × B) n → vector A n × vector B n | unzip [] := ([], []) | unzip ((a, b) :: v) := (a :: pr₁ (unzip v), b :: pr₂ (unzip v)) theorem unzip_nil : unzip (@nil (A × B)) = ([], []) := rfl theorem unzip_cons {n : nat} (a : A) (b : B) (v : vector (A × B) n) : unzip ((a, b) :: v) = (a :: pr₁ (unzip v), b :: pr₂ (unzip v)) := rfl definition zip : Π {n : nat}, vector A n → vector B n → vector (A × B) n | zip [] [] := [] | zip (a::va) (b::vb) := ((a, b) :: zip va vb) theorem zip_nil_nil : zip (@nil A) (@nil B) = nil := rfl theorem zip_cons_cons {n : nat} (a : A) (b : B) (va : vector A n) (vb : vector B n) : zip (a::va) (b::vb) = ((a, b) :: zip va vb) := rfl theorem unzip_zip : ∀ {n : nat} (v₁ : vector A n) (v₂ : vector B n), unzip (zip v₁ v₂) = (v₁, v₂) | 0 [] [] := rfl | (n+1) (a::va) (b::vb) := calc unzip (zip (a :: va) (b :: vb)) = (a :: pr₁ (unzip (zip va vb)), b :: pr₂ (unzip (zip va vb))) : rfl ... = (a :: pr₁ (va, vb), b :: pr₂ (va, vb)) : by rewrite unzip_zip ... = (a :: va, b :: vb) : rfl theorem zip_unzip : ∀ {n : nat} (v : vector (A × B) n), zip (pr₁ (unzip v)) (pr₂ (unzip v)) = v | 0 [] := rfl | (n+1) ((a, b) :: v) := calc zip (pr₁ (unzip ((a, b) :: v))) (pr₂ (unzip ((a, b) :: v))) = (a, b) :: zip (pr₁ (unzip v)) (pr₂ (unzip v)) : rfl ... = (a, b) :: v : by rewrite zip_unzip /- Concat -/ definition concat : Π {n : nat}, vector A n → A → vector A (succ n) | concat [] a := [a] | concat (b::v) a := b :: concat v a theorem concat_nil (a : A) : concat [] a = [a] := rfl theorem concat_cons {n : nat} (b : A) (v : vector A n) (a : A) : concat (b :: v) a = b :: concat v a := rfl theorem last_concat : ∀ {n : nat} (v : vector A n) (a : A), last (concat v a) = a | 0 [] a := rfl | (n+1) (b::v) a := calc last (concat (b::v) a) = last (concat v a) : rfl ... = a : last_concat v a /- Reverse -/ definition reverse : Π {n : nat}, vector A n → vector A n | 0 [] := [] | (n+1) (x :: xs) := concat (reverse xs) x theorem reverse_concat : Π {n : nat} (xs : vector A n) (a : A), reverse (concat xs a) = a :: reverse xs | 0 [] a := rfl | (n+1) (x :: xs) a := begin change (concat (reverse (concat xs a)) x = a :: reverse (x :: xs)), rewrite reverse_concat end theorem reverse_reverse : Π {n : nat} (xs : vector A n), reverse (reverse xs) = xs | 0 [] := rfl | (n+1) (x :: xs) := begin change (reverse (concat (reverse xs) x) = x :: xs), rewrite [reverse_concat, reverse_reverse] end /- list <-> vector -/ definition of_list {A : Type} : Π (l : list A), vector A (list.length l) | list.nil := [] | (list.cons a l) := a :: (of_list l) definition to_list {A : Type} : Π {n : nat}, vector A n → list A | 0 [] := list.nil | (n+1) (a :: vs) := list.cons a (to_list vs) theorem to_list_of_list {A : Type} : ∀ (l : list A), to_list (of_list l) = l | list.nil := rfl | (list.cons a l) := begin change (list.cons a (to_list (of_list l)) = list.cons a l), rewrite to_list_of_list end theorem length_to_list {A : Type} : ∀ {n : nat} (v : vector A n), list.length (to_list v) = n | 0 [] := rfl | (n+1) (a :: vs) := begin change (succ (list.length (to_list vs)) = succ n), rewrite length_to_list end theorem of_list_to_list {A : Type} : ∀ {n : nat} (v : vector A n), of_list (to_list v) == v | 0 [] := !heq.refl | (n+1) (a :: vs) := begin change (a :: of_list (to_list vs) == a :: vs), have H₁ : of_list (to_list vs) == vs, from of_list_to_list vs, revert H₁, generalize (of_list (to_list vs)), rewrite length_to_list at *, intro vs', intro H, have H₂ : vs' = vs, from heq.to_eq H, rewrite H₂, apply heq.refl end /- decidable equality -/ open decidable definition decidable_eq [H : decidable_eq A] : ∀ {n : nat} (v₁ v₂ : vector A n), decidable (v₁ = v₂) | ⌞0⌟ [] [] := by left; reflexivity | ⌞n+1⌟ (a::v₁) (b::v₂) := match H a b with | inl Hab := match decidable_eq v₁ v₂ with | inl He := by left; congruence; repeat assumption | inr Hn := by right; intro h; injection h; refine absurd _ Hn; assumption end | inr Hnab := by right; intro h; injection h; refine absurd _ Hnab; assumption end end vector