/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: algebra.precategory.yoneda Authors: Floris van Doorn -/ --note: modify definition in category.set import algebra.category.constructions .iso open category eq category.ops functor prod.ops is_trunc iso set_option pp.beta true namespace yoneda set_option class.conservative false definition representable_functor_assoc [C : Precategory] {a1 a2 a3 a4 a5 a6 : C} (f1 : hom a5 a6) (f2 : hom a4 a5) (f3 : hom a3 a4) (f4 : hom a2 a3) (f5 : hom a1 a2) : (f1 ∘ f2) ∘ f3 ∘ (f4 ∘ f5) = f1 ∘ (f2 ∘ f3 ∘ f4) ∘ f5 := calc _ = f1 ∘ f2 ∘ f3 ∘ f4 ∘ f5 : by rewrite -assoc ... = f1 ∘ (f2 ∘ f3) ∘ f4 ∘ f5 : by rewrite -assoc ... = f1 ∘ ((f2 ∘ f3) ∘ f4) ∘ f5 : by rewrite -(assoc (f2 ∘ f3) _ _) ... = _ : by rewrite (assoc f2 f3 f4) definition hom_functor (C : Precategory) : Cᵒᵖ ×c C ⇒ set := functor.mk (λ(x : Cᵒᵖ ×c C), homset x.1 x.2) (λ(x y : Cᵒᵖ ×c C) (f : _) (h : homset x.1 x.2), f.2 ∘⁅ C ⁆ (h ∘⁅ C ⁆ f.1)) begin intro x, apply eq_of_homotopy, intro h, exact (!id_left ⬝ !id_right) end begin intros (x, y, z, g, f), apply eq_of_homotopy, intro h, exact (representable_functor_assoc g.2 f.2 h f.1 g.1), end end yoneda open is_equiv equiv namespace functor open prod nat_trans variables {C D E : Precategory} (F : C ×c D ⇒ E) (G : C ⇒ E ^c D) definition functor_curry_ob [reducible] (c : C) : E ^c D := functor.mk (λd, F (c,d)) (λd d' g, F (id, g)) (λd, !respect_id) (λd₁ d₂ d₃ g' g, calc F (id, g' ∘ g) = F (id ∘ id, g' ∘ g) : by rewrite id_comp ... = F ((id,g') ∘ (id, g)) : by esimp ... = F (id,g') ∘ F (id, g) : by rewrite respect_comp) local abbreviation Fob := @functor_curry_ob definition functor_curry_hom ⦃c c' : C⦄ (f : c ⟶ c') : Fob F c ⟹ Fob F c' := nat_trans.mk (λd, F (f, id)) (λd d' g, calc F (id, g) ∘ F (f, id) = F (id ∘ f, g ∘ id) : respect_comp F ... = F (f, g ∘ id) : by rewrite id_left ... = F (f, g) : by rewrite id_right ... = F (f ∘ id, g) : by rewrite id_right ... = F (f ∘ id, id ∘ g) : by rewrite id_left ... = F (f, id) ∘ F (id, g) : (respect_comp F (f, id) (id, g))⁻¹ᵖ) local abbreviation Fhom := @functor_curry_hom theorem functor_curry_hom_def ⦃c c' : C⦄ (f : c ⟶ c') (d : D) : (Fhom F f) d = to_fun_hom F (f, id) := idp theorem functor_curry_id (c : C) : Fhom F (ID c) = nat_trans.id := nat_trans_eq_mk (λd, respect_id F _) theorem functor_curry_comp ⦃c c' c'' : C⦄ (f' : c' ⟶ c'') (f : c ⟶ c') : Fhom F (f' ∘ f) = Fhom F f' ∘n Fhom F f := nat_trans_eq_mk (λd, calc natural_map (Fhom F (f' ∘ f)) d = F (f' ∘ f, id) : functor_curry_hom_def ... = F (f' ∘ f, id ∘ id) : by rewrite id_comp ... = F ((f',id) ∘ (f, id)) : by esimp ... = F (f',id) ∘ F (f, id) : respect_comp F ... = natural_map ((Fhom F f') ∘ (Fhom F f)) d : by esimp) definition functor_curry [reducible] : C ⇒ E ^c D := functor.mk (functor_curry_ob F) (functor_curry_hom F) (functor_curry_id F) (functor_curry_comp F) definition functor_uncurry_ob [reducible] (p : C ×c D) : E := to_fun_ob (G p.1) p.2 local abbreviation Gob := @functor_uncurry_ob definition functor_uncurry_hom ⦃p p' : C ×c D⦄ (f : hom p p') : Gob G p ⟶ Gob G p' := to_fun_hom (to_fun_ob G p'.1) f.2 ∘ natural_map (to_fun_hom G f.1) p.2 local abbreviation Ghom := @functor_uncurry_hom theorem functor_uncurry_id (p : C ×c D) : Ghom G (ID p) = id := calc Ghom G (ID p) = to_fun_hom (to_fun_ob G p.1) id ∘ natural_map (to_fun_hom G id) p.2 : by esimp ... = id ∘ natural_map (to_fun_hom G id) p.2 : by rewrite respect_id ... = id ∘ natural_map nat_trans.id p.2 : by rewrite respect_id ... = id : id_comp theorem functor_uncurry_comp ⦃p p' p'' : C ×c D⦄ (f' : p' ⟶ p'') (f : p ⟶ p') : Ghom G (f' ∘ f) = Ghom G f' ∘ Ghom G f := calc Ghom G (f' ∘ f) = to_fun_hom (to_fun_ob G p''.1) (f'.2 ∘ f.2) ∘ natural_map (to_fun_hom G (f'.1 ∘ f.1)) p.2 : by esimp ... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ to_fun_hom (to_fun_ob G p''.1) f.2) ∘ natural_map (to_fun_hom G (f'.1 ∘ f.1)) p.2 : by rewrite respect_comp ... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ to_fun_hom (to_fun_ob G p''.1) f.2) ∘ natural_map (to_fun_hom G f'.1 ∘ to_fun_hom G f.1) p.2 : by rewrite respect_comp ... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ to_fun_hom (to_fun_ob G p''.1) f.2) ∘ (natural_map (to_fun_hom G f'.1) p.2 ∘ natural_map (to_fun_hom G f.1) p.2) : by esimp ... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ to_fun_hom (to_fun_ob G p''.1) f.2) ∘ (natural_map (to_fun_hom G f'.1) p.2 ∘ natural_map (to_fun_hom G f.1) p.2) : by esimp ... = (to_fun_hom (to_fun_ob G p''.1) f'.2 ∘ natural_map (to_fun_hom G f'.1) p'.2) ∘ (to_fun_hom (to_fun_ob G p'.1) f.2 ∘ natural_map (to_fun_hom G f.1) p.2) : square_prepostcompose (!naturality⁻¹ᵖ) _ _ ... = Ghom G f' ∘ Ghom G f : by esimp definition functor_uncurry [reducible] : C ×c D ⇒ E := functor.mk (functor_uncurry_ob G) (functor_uncurry_hom G) (functor_uncurry_id G) (functor_uncurry_comp G) theorem functor_uncurry_functor_curry : functor_uncurry (functor_curry F) = F := functor_eq (λp, ap (to_fun_ob F) !prod.eta) begin intros (cd, cd', fg), cases cd with (c,d), cases cd' with (c',d'), cases fg with (f,g), apply concat, apply id_leftright, show (functor_uncurry (functor_curry F)) (f, g) = F (f,g), from calc (functor_uncurry (functor_curry F)) (f, g) = to_fun_hom F (id, g) ∘ to_fun_hom F (f, id) : by esimp ... = F (id ∘ f, g ∘ id) : respect_comp F (id,g) (f,id) ... = F (f, g ∘ id) : by rewrite id_left ... = F (f,g) : by rewrite id_right, end definition functor_curry_functor_uncurry_ob (c : C) : functor_curry (functor_uncurry G) c = G c := begin fapply functor_eq, {intro d, apply idp}, {intros (d, d', g), apply concat, apply id_leftright, show to_fun_hom (functor_curry (functor_uncurry G) c) g = to_fun_hom (G c) g, from calc to_fun_hom (functor_curry (functor_uncurry G) c) g = to_fun_hom (G c) g ∘ natural_map (to_fun_hom G (ID c)) d : by esimp ... = to_fun_hom (G c) g ∘ natural_map (ID (G c)) d : by rewrite respect_id ... = to_fun_hom (G c) g : id_right} end theorem functor_curry_functor_uncurry : functor_curry (functor_uncurry G) = G := begin fapply functor_eq, exact (functor_curry_functor_uncurry_ob G), intros (c, c', f), fapply nat_trans_eq_mk, intro d, apply concat, {apply (ap (λx, x ∘ _)), apply concat, apply natural_map_hom_of_eq, apply (ap hom_of_eq), apply ap010_functor_eq}, apply concat, {apply (ap (λx, _ ∘ x)), apply (ap (λx, _ ∘ x)), apply concat, apply natural_map_inv_of_eq, apply (ap (λx, hom_of_eq x⁻¹)), apply ap010_functor_eq}, apply concat, apply id_leftright, apply concat, apply (ap (λx, x ∘ _)), apply respect_id, apply id_left end definition prod_functor_equiv_functor_functor (C D E : Precategory) : (C ×c D ⇒ E) ≃ (C ⇒ E ^c D) := equiv.MK functor_curry functor_uncurry functor_curry_functor_uncurry functor_uncurry_functor_curry definition functor_prod_flip (C D : Precategory) : C ×c D ⇒ D ×c C := functor.mk (λp, (p.2, p.1)) (λp p' h, (h.2, h.1)) (λp, idp) (λp p' p'' h' h, idp) definition functor_prod_flip_functor_prod_flip (C D : Precategory) : functor_prod_flip D C ∘f (functor_prod_flip C D) = functor.id := begin fapply functor_eq, {intro p, apply prod.eta}, intros (p, p', h), cases p with (c, d), cases p' with (c', d'), apply id_leftright, end end functor open functor namespace yoneda --should this be defined as "yoneda_embedding Cᵒᵖ"? definition contravariant_yoneda_embedding (C : Precategory) : Cᵒᵖ ⇒ set ^c C := functor_curry !hom_functor definition yoneda_embedding (C : Precategory) : C ⇒ set ^c Cᵒᵖ := functor_curry (!hom_functor ∘f !functor_prod_flip) end yoneda