inductive list (A : Type) : Type := nil {} : list A, cons : A → list A → list A section variable A : Type inductive list2 : Type := nil2 {} : list2, cons2 : A → list2 → list2 end constant num : Type.{1} namespace Tree inductive tree (A : Type) : Type := node : A → forest A → tree A with forest (A : Type) : Type := nil : forest A, cons : tree A → forest A → forest A end Tree inductive group_struct (A : Type) : Type := mk_group_struct : (A → A → A) → A → group_struct A inductive group : Type := mk_group : Π (A : Type), (A → A → A) → A → group section variable A : Type variable B : Type inductive pair : Type := mk_pair : A → B → pair end definition Prop := Type.{0} inductive eq {A : Type} (a : A) : A → Prop := refl : eq a a section variable {A : Type} inductive eq2 (a : A) : A → Prop := refl2 : eq2 a a end section variable A : Type variable B : Type inductive triple (C : Type) : Type := mk_triple : A → B → C → triple C end