prelude constant A : Type.{1} definition bool : Type.{1} := Type.{0} constant eq : A → A → bool infixl `=`:50 := eq axiom subst (P : A → bool) (a b : A) (H1 : a = b) (H2 : P a) : P b axiom eq_trans (a b c : A) (H1 : a = b) (H2 : b = c) : a = c axiom eq_refl (a : A) : a = a constant le : A → A → bool infixl `≤`:50 := le axiom le_trans (a b c : A) (H1 : a ≤ b) (H2 : b ≤ c) : a ≤ c axiom le_refl (a : A) : a ≤ a axiom eq_le_trans (a b c : A) (H1 : a = b) (H2 : b ≤ c) : a ≤ c axiom le_eq_trans (a b c : A) (H1 : a ≤ b) (H2 : b = c) : a ≤ c attribute subst [subst] attribute eq_refl [refl] attribute le_refl [refl] attribute eq_trans [trans] attribute le_trans [trans] attribute eq_le_trans [trans] attribute le_eq_trans [trans] constants a b c d e f : A axiom H1 : a = b axiom H2 : b ≤ c axiom H3 : c ≤ d axiom H4 : d = e check calc a = b : H1 ... ≤ c : H2 ... ≤ d : H3 ... = e : H4 constant lt : A → A → bool infixl `<`:50 := lt axiom lt_trans (a b c : A) (H1 : a < b) (H2 : b < c) : a < c axiom le_lt_trans (a b c : A) (H1 : a ≤ b) (H2 : b < c) : a < c axiom lt_le_trans (a b c : A) (H1 : a < b) (H2 : b ≤ c) : a < c axiom H5 : c < d check calc b ≤ c : H2 ... < d : H5 -- Error le_lt_trans was not registered yet attribute le_lt_trans [trans] check calc b ≤ c : H2 ... < d : H5 constant le2 : A → A → bool infixl `≤`:50 := le2 constant le2_trans (a b c : A) (H1 : le2 a b) (H2 : le2 b c) : le2 a c attribute le2_trans [trans] print raw calc b ≤ c : H2 ... ≤ d : H3 ... ≤ e : H4