-- Copyright (c) 2014 Floris van Doorn. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Authors: Floris van Doorn, Jakob von Raumer import .basic types.pi open function precategory eq prod equiv is_equiv sigma sigma.ops truncation open pi structure functor (C D : Precategory) : Type := (obF : C → D) (homF : Π ⦃a b : C⦄, hom a b → hom (obF a) (obF b)) (respect_id : Π (a : C), homF (ID a) = ID (obF a)) (respect_comp : Π {a b c : C} (g : hom b c) (f : hom a b), homF (g ∘ f) = homF g ∘ homF f) infixl `⇒`:25 := functor namespace functor variables {C D E : Precategory} attribute obF [coercion] attribute homF [coercion] -- "functor C D" is equivalent to a certain sigma type set_option unifier.max_steps 38500 protected definition sigma_char : (Σ (obF : C → D) (homF : Π ⦃a b : C⦄, hom a b → hom (obF a) (obF b)), (Π (a : C), homF (ID a) = ID (obF a)) × (Π {a b c : C} (g : hom b c) (f : hom a b), homF (g ∘ f) = homF g ∘ homF f)) ≃ (functor C D) := begin fapply equiv.mk, intro S, fapply functor.mk, exact (S.1), exact (S.2.1), exact (pr₁ S.2.2), exact (pr₂ S.2.2), fapply adjointify, intro F, apply (functor.rec_on F), intros (d1, d2, d3, d4), exact (sigma.mk d1 (sigma.mk d2 (pair d3 (@d4)))), intro F, apply (functor.rec_on F), intros (d1, d2, d3, d4), apply idp, intro S, apply (sigma.rec_on S), intros (d1, S2), apply (sigma.rec_on S2), intros (d2, P1), apply (prod.rec_on P1), intros (d3, d4), apply idp, end set_option apply.class_instance false -- disable class instance resolution in the apply tactic protected definition strict_cat_has_functor_hset [HD : is_hset (objects D)] : is_hset (functor C D) := begin apply trunc_equiv, apply equiv.to_is_equiv, apply sigma_char, apply trunc_sigma, apply trunc_pi, intros, exact HD, intro F, apply trunc_sigma, apply trunc_pi, intro a, apply trunc_pi, intro b, apply trunc_pi, intro c, apply !homH, intro H, apply trunc_prod, apply trunc_pi, intro a, apply succ_is_trunc, apply trunc_succ, apply !homH, apply trunc_pi, intro a, apply trunc_pi, intro b, apply trunc_pi, intro c, apply trunc_pi, intro g, apply trunc_pi, intro f, apply succ_is_trunc, apply trunc_succ, apply !homH, end -- The following lemmas will later be used to prove that the type of -- precategories formes a precategory itself protected definition compose (G : functor D E) (F : functor C D) : functor C E := functor.mk (λ x, G (F x)) (λ a b f, G (F f)) (λ a, calc G (F (ID a)) = G (ID (F a)) : {respect_id F a} ... = ID (G (F a)) : respect_id G (F a)) (λ a b c g f, calc G (F (g ∘ f)) = G (F g ∘ F f) : respect_comp F g f ... = G (F g) ∘ G (F f) : respect_comp G (F g) (F f)) infixr `∘f`:60 := compose protected theorem congr {C : Precategory} {D : Precategory} (F : C → D) (foo2 : Π ⦃a b : C⦄, hom a b → hom (F a) (F b)) (foo3a foo3b : Π (a : C), foo2 (ID a) = ID (F a)) (foo4a foo4b : Π {a b c : C} (g : @hom C C b c) (f : @hom C C a b), foo2 (g ∘ f) = foo2 g ∘ foo2 f) (p3 : foo3a = foo3b) (p4 : @foo4a = @foo4b) : functor.mk F foo2 foo3a @foo4a = functor.mk F foo2 foo3b @foo4b := begin apply (eq.rec_on p3), intros, apply (eq.rec_on p4), intros, apply idp, end protected theorem assoc {A B C D : Precategory} (H : functor C D) (G : functor B C) (F : functor A B) : H ∘f (G ∘f F) = (H ∘f G) ∘f F := begin apply (functor.rec_on H), intros (H1, H2, H3, H4), apply (functor.rec_on G), intros (G1, G2, G3, G4), apply (functor.rec_on F), intros (F1, F2, F3, F4), fapply functor.congr, apply funext.path_pi, intro a, apply (@is_hset.elim), apply !homH, apply funext.path_pi, intro a, repeat (apply funext.path_pi; intros), apply (@is_hset.elim), apply !homH, end protected definition id {C : Precategory} : functor C C := mk (λa, a) (λ a b f, f) (λ a, idp) (λ a b c f g, idp) protected definition ID (C : Precategory) : functor C C := id protected theorem id_left (F : functor C D) : id ∘f F = F := begin apply (functor.rec_on F), intros (F1, F2, F3, F4), fapply functor.congr, apply funext.path_pi, intro a, apply (@is_hset.elim), apply !homH, repeat (apply funext.path_pi; intros), apply (@is_hset.elim), apply !homH, end protected theorem id_right (F : functor C D) : F ∘f id = F := begin apply (functor.rec_on F), intros (F1, F2, F3, F4), fapply functor.congr, apply funext.path_pi, intro a, apply (@is_hset.elim), apply !homH, repeat (apply funext.path_pi; intros), apply (@is_hset.elim), apply !homH, end end functor namespace precategory open functor definition precat_of_strict_precats : precategory (Σ (C : Precategory), is_hset (objects C)) := precategory.mk (λ a b, functor a.1 b.1) (λ a b, @functor.strict_cat_has_functor_hset a.1 b.1 b.2) (λ a b c g f, functor.compose g f) (λ a, functor.id) (λ a b c d h g f, !functor.assoc) (λ a b f, !functor.id_left) (λ a b f, !functor.id_right) definition Precat_of_strict_cats := Mk precat_of_strict_precats namespace ops notation `PreCat`:max := Precat_of_strict_cats attribute precat_of_strict_precats [instance] end ops end precategory namespace functor -- open category.ops -- universes l m variables {C D : Precategory} -- check hom C D -- variables (F : C ⟶ D) (G : D ⇒ C) -- check G ∘ F -- check F ∘f G -- variables (a b : C) (f : a ⟶ b) -- check F a -- check F b -- check F f -- check G (F f) -- print "---" -- -- check (G ∘ F) f --error -- check (λ(x : functor C C), x) (G ∘ F) f -- check (G ∘f F) f -- print "---" -- -- check (G ∘ F) a --error -- check (G ∘f F) a -- print "---" -- -- check λ(H : hom C D) (x : C), H x --error -- check λ(H : @hom _ Cat C D) (x : C), H x -- check λ(H : C ⇒ D) (x : C), H x -- print "---" -- -- variables {obF obG : C → D} (Hob : ∀x, obF x = obG x) (homF : Π(a b : C) (f : a ⟶ b), obF a ⟶ obF b) (homG : Π(a b : C) (f : a ⟶ b), obG a ⟶ obG b) -- -- check eq.rec_on (funext Hob) homF = homG /-theorem mk_heq {obF obG : C → D} {homF homG idF idG compF compG} (Hob : ∀x, obF x = obG x) (Hmor : ∀(a b : C) (f : a ⟶ b), homF a b f == homG a b f) : mk obF homF idF compF = mk obG homG idG compG := hddcongr_arg4 mk (funext Hob) (hfunext (λ a, hfunext (λ b, hfunext (λ f, !Hmor)))) !proof_irrel !proof_irrel protected theorem hequal {F G : C ⇒ D} : Π (Hob : ∀x, F x = G x) (Hmor : ∀a b (f : a ⟶ b), F f == G f), F = G := functor.rec (λ obF homF idF compF, functor.rec (λ obG homG idG compG Hob Hmor, mk_heq Hob Hmor) G) F-/ -- theorem mk_eq {obF obG : C → D} {homF homG idF idG compF compG} (Hob : ∀x, obF x = obG x) -- (Hmor : ∀(a b : C) (f : a ⟶ b), cast (congr_arg (λ x, x a ⟶ x b) (funext Hob)) (homF a b f) -- = homG a b f) -- : mk obF homF idF compF = mk obG homG idG compG := -- dcongr_arg4 mk -- (funext Hob) -- (funext (λ a, funext (λ b, funext (λ f, sorry ⬝ Hmor a b f)))) -- -- to fill this sorry use (a generalization of) cast_pull -- !proof_irrel -- !proof_irrel -- protected theorem equal {F G : C ⇒ D} : Π (Hob : ∀x, F x = G x) -- (Hmor : ∀a b (f : a ⟶ b), cast (congr_arg (λ x, x a ⟶ x b) (funext Hob)) (F f) = G f), F = G := -- functor.rec -- (λ obF homF idF compF, -- functor.rec -- (λ obG homG idG compG Hob Hmor, mk_eq Hob Hmor) -- G) -- F end functor