-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura import logic.eq open eq.ops namespace binary context parameter {A : Type} parameter f : A → A → A infixl `*`:75 := f definition commutative := ∀{a b}, a*b = b*a definition associative := ∀{a b c}, (a*b)*c = a*(b*c) end context parameter {A : Type} parameter {f : A → A → A} hypothesis H_comm : commutative f hypothesis H_assoc : associative f infixl `*`:75 := f theorem left_comm : ∀a b c, a*(b*c) = b*(a*c) := take a b c, calc a*(b*c) = (a*b)*c : H_assoc⁻¹ ... = (b*a)*c : {H_comm} ... = b*(a*c) : H_assoc theorem right_comm : ∀a b c, (a*b)*c = (a*c)*b := take a b c, calc (a*b)*c = a*(b*c) : H_assoc ... = a*(c*b) : {H_comm} ... = (a*c)*b : H_assoc⁻¹ end context parameter {A : Type} parameter {f : A → A → A} hypothesis H_assoc : associative f infixl `*`:75 := f theorem assoc4helper (a b c d) : (a*b)*(c*d) = a*((b*c)*d) := calc (a*b)*(c*d) = a*(b*(c*d)) : H_assoc ... = a*((b*c)*d) : {H_assoc⁻¹} end end binary