-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura import macros tactic universe U ≥ 1 definition TypeU := (Type U) -- create default rewrite rule set (* mk_rewrite_rule_set() *) variable Bool : Type -- Reflexivity for heterogeneous equality -- We use universe U+1 in heterogeneous equality axioms because we want to be able -- to state the equality between A and B of (Type U) axiom hrefl {A : (Type U+1)} (a : A) : a == a -- Homogeneous equality definition eq {A : (Type U)} (a b : A) := a == b infix 50 = : eq theorem refl {A : (Type U)} (a : A) : a = a := hrefl a theorem heq_eq {A : (Type U)} (a b : A) : (a == b) = (a = b) := refl (a == b) definition true : Bool := (λ x : Bool, x) = (λ x : Bool, x) theorem trivial : true := refl (λ x : Bool, x) set_opaque true true definition false : Bool := ∀ x : Bool, x alias ⊤ : true alias ⊥ : false definition not (a : Bool) := a → false notation 40 ¬ _ : not definition or (a b : Bool) := ∀ c : Bool, (a → c) → (b → c) → c infixr 30 || : or infixr 30 \/ : or infixr 30 ∨ : or definition and (a b : Bool) := ∀ c : Bool, (a → b → c) → c infixr 35 && : and infixr 35 /\ : and infixr 35 ∧ : and definition implies (a b : Bool) := a → b definition neq {A : (Type U)} (a b : A) := ¬ (a = b) infix 50 ≠ : neq theorem a_neq_a_elim {A : (Type U)} {a : A} (H : a ≠ a) : false := H (refl a) definition iff (a b : Bool) := a = b infixr 25 <-> : iff infixr 25 ↔ : iff theorem not_intro {a : Bool} (H : a → false) : ¬ a := H theorem absurd {a : Bool} (H1 : a) (H2 : ¬ a) : false := H2 H1 -- The Lean parser has special treatment for the constant exists. -- It allows us to write -- exists x y : A, P x y and ∃ x y : A, P x y -- as syntax sugar for -- exists A (fun x : A, exists A (fun y : A, P x y)) -- That is, it treats the exists as an extra binder such as fun and forall. -- It also provides an alias (Exists) that should be used when we -- want to treat exists as a constant. definition Exists (A : (Type U)) (P : A → Bool) := ¬ (∀ x, ¬ (P x)) definition exists_unique {A : (Type U)} (p : A → Bool) := ∃ x, p x ∧ ∀ y, y ≠ x → ¬ p y theorem false_elim (a : Bool) (H : false) : a := H a set_opaque false true theorem mt {a b : Bool} (H1 : a → b) (H2 : ¬ b) : ¬ a := assume Ha : a, absurd (H1 Ha) H2 theorem contrapos {a b : Bool} (H : a → b) : ¬ b → ¬ a := assume Hnb : ¬ b, mt H Hnb theorem absurd_elim {a : Bool} (b : Bool) (H1 : a) (H2 : ¬ a) : b := false_elim b (absurd H1 H2) theorem or_introl {a : Bool} (H : a) (b : Bool) : a ∨ b := take c : Bool, assume (H1 : a → c) (H2 : b → c), H1 H theorem or_intror {b : Bool} (a : Bool) (H : b) : a ∨ b := take c : Bool, assume (H1 : a → c) (H2 : b → c), H2 H theorem or_elim {a b c : Bool} (H1 : a ∨ b) (H2 : a → c) (H3 : b → c) : c := H1 c H2 H3 theorem resolve1 {a b : Bool} (H1 : a ∨ b) (H2 : ¬ a) : b := H1 b (assume Ha : a, absurd_elim b Ha H2) (assume Hb : b, Hb) theorem resolve2 {a b : Bool} (H1 : a ∨ b) (H2 : ¬ b) : a := H1 a (assume Ha : a, Ha) (assume Hb : b, absurd_elim a Hb H2) theorem or_flip {a b : Bool} (H : a ∨ b) : b ∨ a := take c : Bool, assume (H1 : b → c) (H2 : a → c), H c H2 H1 theorem and_intro {a b : Bool} (H1 : a) (H2 : b) : a ∧ b := take c : Bool, assume H : a → b → c, H H1 H2 theorem and_eliml {a b : Bool} (H : a ∧ b) : a := H a (assume (Ha : a) (Hb : b), Ha) theorem and_elimr {a b : Bool} (H : a ∧ b) : b := H b (assume (Ha : a) (Hb : b), Hb) axiom subst {A : (Type U)} {a b : A} {P : A → Bool} (H1 : P a) (H2 : a = b) : P b -- Alias for subst where we provide P explicitly, but keep A,a,b implicit theorem substp {A : (Type U)} {a b : A} (P : A → Bool) (H1 : P a) (H2 : a = b) : P b := subst H1 H2 theorem symm {A : (Type U)} {a b : A} (H : a = b) : b = a := subst (refl a) H theorem trans {A : (Type U)} {a b c : A} (H1 : a = b) (H2 : b = c) : a = c := subst H1 H2 theorem hcongr1 {A : (Type U)} {B : A → (Type U)} {f g : ∀ x, B x} (H : f = g) (a : A) : f a = g a := substp (fun h, f a = h a) (refl (f a)) H theorem congr1 {A B : (Type U)} {f g : A → B} (H : f = g) (a : A) : f a = g a := hcongr1 H a theorem congr2 {A B : (Type U)} {a b : A} (f : A → B) (H : a = b) : f a = f b := substp (fun x : A, f a = f x) (refl (f a)) H theorem congr {A B : (Type U)} {f g : A → B} {a b : A} (H1 : f = g) (H2 : a = b) : f a = g b := subst (congr2 f H2) (congr1 H1 b) theorem true_ne_false : ¬ true = false := assume H : true = false, subst trivial H theorem absurd_not_true (H : ¬ true) : false := absurd trivial H theorem not_false_trivial : ¬ false := assume H : false, H -- "equality modus pones" theorem eqmp {a b : Bool} (H1 : a = b) (H2 : a) : b := subst H2 H1 infixl 100 <| : eqmp infixl 100 ◂ : eqmp theorem eqmpr {a b : Bool} (H1 : a = b) (H2 : b) : a := (symm H1) ◂ H2 theorem imp_trans {a b c : Bool} (H1 : a → b) (H2 : b → c) : a → c := assume Ha, H2 (H1 Ha) theorem imp_eq_trans {a b c : Bool} (H1 : a → b) (H2 : b = c) : a → c := assume Ha, H2 ◂ (H1 Ha) theorem eq_imp_trans {a b c : Bool} (H1 : a = b) (H2 : b → c) : a → c := assume Ha, H2 (H1 ◂ Ha) theorem to_eq {A : (Type U)} {a b : A} (H : a == b) : a = b := (heq_eq a b) ◂ H theorem to_heq {A : (Type U)} {a b : A} (H : a = b) : a == b := (symm (heq_eq a b)) ◂ H theorem iff_eliml {a b : Bool} (H : a ↔ b) : a → b := (λ Ha : a, eqmp H Ha) theorem iff_elimr {a b : Bool} (H : a ↔ b) : b → a := (λ Hb : b, eqmpr H Hb) theorem ne_symm {A : (Type U)} {a b : A} (H : a ≠ b) : b ≠ a := assume H1 : b = a, H (symm H1) theorem eq_ne_trans {A : (Type U)} {a b c : A} (H1 : a = b) (H2 : b ≠ c) : a ≠ c := subst H2 (symm H1) theorem ne_eq_trans {A : (Type U)} {a b c : A} (H1 : a ≠ b) (H2 : b = c) : a ≠ c := subst H1 H2 theorem eqt_elim {a : Bool} (H : a = true) : a := (symm H) ◂ trivial theorem eqf_elim {a : Bool} (H : a = false) : ¬ a := not_intro (λ Ha : a, H ◂ Ha) theorem heqt_elim {a : Bool} (H : a == true) : a := eqt_elim (to_eq H) axiom boolcomplete (a : Bool) : a = true ∨ a = false theorem case (P : Bool → Bool) (H1 : P true) (H2 : P false) (a : Bool) : P a := or_elim (boolcomplete a) (assume Ht : a = true, subst H1 (symm Ht)) (assume Hf : a = false, subst H2 (symm Hf)) theorem em (a : Bool) : a ∨ ¬ a := or_elim (boolcomplete a) (assume Ht : a = true, or_introl (eqt_elim Ht) (¬ a)) (assume Hf : a = false, or_intror a (eqf_elim Hf)) theorem boolcomplete_swapped (a : Bool) : a = false ∨ a = true := case (λ x, x = false ∨ x = true) (or_intror (true = false) (refl true)) (or_introl (refl false) (false = true)) a theorem not_true : (¬ true) = false := let aux : ¬ (¬ true) = true := assume H : (¬ true) = true, absurd_not_true (subst trivial (symm H)) in resolve1 (boolcomplete (¬ true)) aux theorem not_false : (¬ false) = true := let aux : ¬ (¬ false) = false := assume H : (¬ false) = false, subst not_false_trivial H in resolve1 (boolcomplete_swapped (¬ false)) aux add_rewrite not_true not_false theorem not_not_eq (a : Bool) : (¬ ¬ a) = a := case (λ x, (¬ ¬ x) = x) (calc (¬ ¬ true) = (¬ false) : { not_true } ... = true : not_false) (calc (¬ ¬ false) = (¬ true) : { not_false } ... = false : not_true) a add_rewrite not_not_eq theorem not_neq {A : (Type U)} (a b : A) : ¬ (a ≠ b) ↔ a = b := not_not_eq (a = b) add_rewrite not_neq theorem not_neq_elim {A : (Type U)} {a b : A} (H : ¬ (a ≠ b)) : a = b := (not_neq a b) ◂ H theorem not_not_elim {a : Bool} (H : ¬ ¬ a) : a := (not_not_eq a) ◂ H theorem not_imp_eliml {a b : Bool} (Hnab : ¬ (a → b)) : a := not_not_elim (show ¬ ¬ a, from assume Hna : ¬ a, absurd (assume Ha : a, absurd_elim b Ha Hna) Hnab) theorem not_imp_elimr {a b : Bool} (H : ¬ (a → b)) : ¬ b := assume Hb : b, absurd (assume Ha : a, Hb) H theorem boolext {a b : Bool} (Hab : a → b) (Hba : b → a) : a = b := or_elim (boolcomplete a) (λ Hat : a = true, or_elim (boolcomplete b) (λ Hbt : b = true, trans Hat (symm Hbt)) (λ Hbf : b = false, false_elim (a = b) (subst (Hab (eqt_elim Hat)) Hbf))) (λ Haf : a = false, or_elim (boolcomplete b) (λ Hbt : b = true, false_elim (a = b) (subst (Hba (eqt_elim Hbt)) Haf)) (λ Hbf : b = false, trans Haf (symm Hbf))) -- Another name for boolext theorem iff_intro {a b : Bool} (Hab : a → b) (Hba : b → a) : a ↔ b := boolext Hab Hba theorem eqt_intro {a : Bool} (H : a) : a = true := boolext (assume H1 : a, trivial) (assume H2 : true, H) theorem eqf_intro {a : Bool} (H : ¬ a) : a = false := boolext (assume H1 : a, absurd H1 H) (assume H2 : false, false_elim a H2) theorem by_contradiction {a : Bool} (H : ¬ a → false) : a := or_elim (em a) (λ H1 : a, H1) (λ H1 : ¬ a, false_elim a (H H1)) theorem a_neq_a {A : (Type U)} (a : A) : (a ≠ a) ↔ false := boolext (assume H, a_neq_a_elim H) (assume H, false_elim (a ≠ a) H) theorem eq_id {A : (Type U)} (a : A) : (a = a) ↔ true := eqt_intro (refl a) theorem iff_id (a : Bool) : (a ↔ a) ↔ true := eqt_intro (refl a) theorem heq_id (A : (Type U+1)) (a : A) : (a == a) ↔ true := eqt_intro (hrefl a) theorem neq_elim {A : (Type U)} {a b : A} (H : a ≠ b) : a = b ↔ false := eqf_intro H theorem neq_to_not_eq {A : (Type U)} {a b : A} : a ≠ b ↔ ¬ a = b := refl (a ≠ b) add_rewrite eq_id iff_id neq_to_not_eq -- Remark: ordered rewriting + assoc + comm + left_comm sorts a term lexicographically theorem left_comm {A : (Type U)} {R : A -> A -> A} (comm : ∀ x y, R x y = R y x) (assoc : ∀ x y z, R (R x y) z = R x (R y z)) : ∀ x y z, R x (R y z) = R y (R x z) := take x y z, calc R x (R y z) = R (R x y) z : symm (assoc x y z) ... = R (R y x) z : { comm x y } ... = R y (R x z) : assoc y x z theorem or_comm (a b : Bool) : (a ∨ b) = (b ∨ a) := boolext (assume H, or_elim H (λ H1, or_intror b H1) (λ H2, or_introl H2 a)) (assume H, or_elim H (λ H1, or_intror a H1) (λ H2, or_introl H2 b)) theorem or_assoc (a b c : Bool) : (a ∨ b) ∨ c ↔ a ∨ (b ∨ c) := boolext (assume H : (a ∨ b) ∨ c, or_elim H (λ H1 : a ∨ b, or_elim H1 (λ Ha : a, or_introl Ha (b ∨ c)) (λ Hb : b, or_intror a (or_introl Hb c))) (λ Hc : c, or_intror a (or_intror b Hc))) (assume H : a ∨ (b ∨ c), or_elim H (λ Ha : a, (or_introl (or_introl Ha b) c)) (λ H1 : b ∨ c, or_elim H1 (λ Hb : b, or_introl (or_intror a Hb) c) (λ Hc : c, or_intror (a ∨ b) Hc))) theorem or_id (a : Bool) : a ∨ a ↔ a := boolext (assume H, or_elim H (λ H1, H1) (λ H2, H2)) (assume H, or_introl H a) theorem or_falsel (a : Bool) : a ∨ false ↔ a := boolext (assume H, or_elim H (λ H1, H1) (λ H2, false_elim a H2)) (assume H, or_introl H false) theorem or_falser (a : Bool) : false ∨ a ↔ a := trans (or_comm false a) (or_falsel a) theorem or_truel (a : Bool) : true ∨ a ↔ true := boolext (assume H : true ∨ a, trivial) (assume H : true, or_introl trivial a) theorem or_truer (a : Bool) : a ∨ true ↔ true := trans (or_comm a true) (or_truel a) theorem or_tauto (a : Bool) : a ∨ ¬ a ↔ true := eqt_intro (em a) theorem or_left_comm (a b c : Bool) : a ∨ (b ∨ c) ↔ b ∨ (a ∨ c) := left_comm or_comm or_assoc a b c add_rewrite or_comm or_assoc or_id or_falsel or_falser or_truel or_truer or_tauto or_left_comm theorem and_comm (a b : Bool) : a ∧ b ↔ b ∧ a := boolext (assume H, and_intro (and_elimr H) (and_eliml H)) (assume H, and_intro (and_elimr H) (and_eliml H)) theorem and_id (a : Bool) : a ∧ a ↔ a := boolext (assume H, and_eliml H) (assume H, and_intro H H) theorem and_assoc (a b c : Bool) : (a ∧ b) ∧ c ↔ a ∧ (b ∧ c) := boolext (assume H, and_intro (and_eliml (and_eliml H)) (and_intro (and_elimr (and_eliml H)) (and_elimr H))) (assume H, and_intro (and_intro (and_eliml H) (and_eliml (and_elimr H))) (and_elimr (and_elimr H))) theorem and_truer (a : Bool) : a ∧ true ↔ a := boolext (assume H : a ∧ true, and_eliml H) (assume H : a, and_intro H trivial) theorem and_truel (a : Bool) : true ∧ a ↔ a := trans (and_comm true a) (and_truer a) theorem and_falsel (a : Bool) : a ∧ false ↔ false := boolext (assume H, and_elimr H) (assume H, false_elim (a ∧ false) H) theorem and_falser (a : Bool) : false ∧ a ↔ false := trans (and_comm false a) (and_falsel a) theorem and_absurd (a : Bool) : a ∧ ¬ a ↔ false := boolext (assume H, absurd (and_eliml H) (and_elimr H)) (assume H, false_elim (a ∧ ¬ a) H) theorem and_left_comm (a b c : Bool) : a ∧ (b ∧ c) ↔ b ∧ (a ∧ c) := left_comm and_comm and_assoc a b c add_rewrite and_comm and_assoc and_id and_falsel and_falser and_truel and_truer and_absurd and_left_comm theorem imp_truer (a : Bool) : (a → true) ↔ true := boolext (assume H, trivial) (assume H Ha, trivial) theorem imp_truel (a : Bool) : (true → a) ↔ a := boolext (assume H : true → a, H trivial) (assume Ha H, Ha) theorem imp_falser (a : Bool) : (a → false) ↔ ¬ a := refl _ theorem imp_falsel (a : Bool) : (false → a) ↔ true := boolext (assume H, trivial) (assume H Hf, false_elim a Hf) theorem imp_id (a : Bool) : (a → a) ↔ true := eqt_intro (λ H : a, H) add_rewrite imp_truer imp_truel imp_falser imp_falsel imp_id theorem imp_or (a b : Bool) : (a → b) ↔ ¬ a ∨ b := boolext (assume H : a → b, (or_elim (em a) (λ Ha : a, or_intror (¬ a) (H Ha)) (λ Hna : ¬ a, or_introl Hna b))) (assume H : ¬ a ∨ b, assume Ha : a, resolve1 H ((symm (not_not_eq a)) ◂ Ha)) theorem or_imp (a b : Bool) : a ∨ b ↔ (¬ a → b) := boolext (assume H : a ∨ b, (or_elim H (assume (Ha : a) (Hna : ¬ a), absurd_elim b Ha Hna) (assume (Hb : b) (Hna : ¬ a), Hb))) (assume H : ¬ a → b, (or_elim (em a) (assume Ha : a, or_introl Ha b) (assume Hna : ¬ a, or_intror a (H Hna)))) theorem not_congr {a b : Bool} (H : a ↔ b) : ¬ a ↔ ¬ b := congr2 not H -- Recall that exists is defined as ¬ ∀ x : A, ¬ P x theorem exists_elim {A : (Type U)} {P : A → Bool} {B : Bool} (H1 : Exists A P) (H2 : ∀ (a : A) (H : P a), B) : B := by_contradiction (assume R : ¬ B, absurd (take a : A, mt (assume H : P a, H2 a H) R) H1) theorem exists_intro {A : (Type U)} {P : A → Bool} (a : A) (H : P a) : Exists A P := assume H1 : (∀ x : A, ¬ P x), absurd H (H1 a) theorem not_exists (A : (Type U)) (P : A → Bool) : ¬ (∃ x : A, P x) ↔ (∀ x : A, ¬ P x) := calc (¬ ∃ x : A, P x) = ¬ ¬ ∀ x : A, ¬ P x : refl (¬ ∃ x : A, P x) ... = ∀ x : A, ¬ P x : not_not_eq (∀ x : A, ¬ P x) theorem not_exists_elim {A : (Type U)} {P : A → Bool} (H : ¬ ∃ x : A, P x) : ∀ x : A, ¬ P x := (not_exists A P) ◂ H theorem exists_unfold1 {A : (Type U)} {P : A → Bool} (a : A) (H : ∃ x : A, P x) : P a ∨ (∃ x : A, x ≠ a ∧ P x) := exists_elim H (λ (w : A) (H1 : P w), or_elim (em (w = a)) (λ Heq : w = a, or_introl (subst H1 Heq) (∃ x : A, x ≠ a ∧ P x)) (λ Hne : w ≠ a, or_intror (P a) (exists_intro w (and_intro Hne H1)))) theorem exists_unfold2 {A : (Type U)} {P : A → Bool} (a : A) (H : P a ∨ (∃ x : A, x ≠ a ∧ P x)) : ∃ x : A, P x := or_elim H (λ H1 : P a, exists_intro a H1) (λ H2 : (∃ x : A, x ≠ a ∧ P x), exists_elim H2 (λ (w : A) (Hw : w ≠ a ∧ P w), exists_intro w (and_elimr Hw))) theorem exists_unfold {A : (Type U)} (P : A → Bool) (a : A) : (∃ x : A, P x) ↔ (P a ∨ (∃ x : A, x ≠ a ∧ P x)) := boolext (assume H : (∃ x : A, P x), exists_unfold1 a H) (assume H : (P a ∨ (∃ x : A, x ≠ a ∧ P x)), exists_unfold2 a H) definition inhabited (A : (Type U)) := ∃ x : A, true -- If we have an element of type A, then A is inhabited theorem inhabited_intro {A : (Type U)} (a : A) : inhabited A := assume H : (∀ x, ¬ true), absurd_not_true (H a) theorem inhabited_elim {A : (Type U)} (H1 : inhabited A) {B : Bool} (H2 : A → B) : B := obtain (w : A) (Hw : true), from H1, H2 w theorem inhabited_ex_intro {A : (Type U)} {P : A → Bool} (H : ∃ x, P x) : inhabited A := obtain (w : A) (Hw : P w), from H, exists_intro w trivial -- If a function space is non-empty, then for every 'a' in the domain, the range (B a) is not empty theorem inhabited_range {A : (Type U)} {B : A → (Type U)} (H : inhabited (∀ x, B x)) (a : A) : inhabited (B a) := by_contradiction (assume N : ¬ inhabited (B a), let s1 : ¬ ∃ x : B a, true := N, s2 : ∀ x : B a, false := take x : B a, absurd_not_true (not_exists_elim s1 x), s3 : ∃ y : (∀ x, B x), true := H in obtain (w : (∀ x, B x)) (Hw : true), from s3, let s4 : B a := w a in s2 s4) theorem exists_rem {A : (Type U)} (H : inhabited A) (p : Bool) : (∃ x : A, p) ↔ p := iff_intro (assume Hl : (∃ x : A, p), obtain (w : A) (Hw : p), from Hl, Hw) (assume Hr : p, inhabited_elim H (λ w, exists_intro w Hr)) theorem forall_rem {A : (Type U)} (H : inhabited A) (p : Bool) : (∀ x : A, p) ↔ p := iff_intro (assume Hl : (∀ x : A, p), inhabited_elim H (λ w, Hl w)) (assume Hr : p, take x, Hr) theorem not_and (a b : Bool) : ¬ (a ∧ b) ↔ ¬ a ∨ ¬ b := boolext (assume H, or_elim (em a) (assume Ha, or_elim (em b) (assume Hb, absurd_elim (¬ a ∨ ¬ b) (and_intro Ha Hb) H) (assume Hnb, or_intror (¬ a) Hnb)) (assume Hna, or_introl Hna (¬ b))) (assume (H : ¬ a ∨ ¬ b) (N : a ∧ b), or_elim H (assume Hna, absurd (and_eliml N) Hna) (assume Hnb, absurd (and_elimr N) Hnb)) theorem not_and_elim {a b : Bool} (H : ¬ (a ∧ b)) : ¬ a ∨ ¬ b := (not_and a b) ◂ H theorem not_or (a b : Bool) : ¬ (a ∨ b) ↔ ¬ a ∧ ¬ b := boolext (assume H, or_elim (em a) (assume Ha, absurd_elim (¬ a ∧ ¬ b) (or_introl Ha b) H) (assume Hna, or_elim (em b) (assume Hb, absurd_elim (¬ a ∧ ¬ b) (or_intror a Hb) H) (assume Hnb, and_intro Hna Hnb))) (assume (H : ¬ a ∧ ¬ b) (N : a ∨ b), or_elim N (assume Ha, absurd Ha (and_eliml H)) (assume Hb, absurd Hb (and_elimr H))) theorem not_or_elim {a b : Bool} (H : ¬ (a ∨ b)) : ¬ a ∧ ¬ b := (not_or a b) ◂ H theorem not_implies (a b : Bool) : ¬ (a → b) ↔ a ∧ ¬ b := calc (¬ (a → b)) = ¬ (¬ a ∨ b) : { imp_or a b } ... = ¬ ¬ a ∧ ¬ b : not_or (¬ a) b ... = a ∧ ¬ b : congr2 (λ x, x ∧ ¬ b) (not_not_eq a) theorem and_imp (a b : Bool) : a ∧ b ↔ ¬ (a → ¬ b) := have H1 : a ∧ ¬ ¬ b ↔ ¬ (a → ¬ b), from symm (not_implies a (¬ b)), subst H1 (not_not_eq b) theorem not_implies_elim {a b : Bool} (H : ¬ (a → b)) : a ∧ ¬ b := (not_implies a b) ◂ H theorem a_eq_not_a (a : Bool) : (a = ¬ a) ↔ false := boolext (λ H, or_elim (em a) (λ Ha, absurd Ha (subst Ha H)) (λ Hna, absurd (subst Hna (symm H)) Hna)) (λ H, false_elim (a = ¬ a) H) theorem a_iff_not_a (a : Bool) : (a ↔ ¬ a) ↔ false := a_eq_not_a a theorem true_eq_false : (true = false) ↔ false := subst (a_eq_not_a true) not_true theorem true_iff_false : (true ↔ false) ↔ false := true_eq_false theorem false_eq_true : (false = true) ↔ false := subst (a_eq_not_a false) not_false theorem false_iff_true : (false ↔ true) ↔ false := false_eq_true theorem a_iff_true (a : Bool) : (a ↔ true) ↔ a := boolext (λ H, eqt_elim H) (λ H, eqt_intro H) theorem a_iff_false (a : Bool) : (a ↔ false) ↔ ¬ a := boolext (λ H, eqf_elim H) (λ H, eqf_intro H) add_rewrite a_eq_not_a a_iff_not_a true_eq_false true_iff_false false_eq_true false_iff_true a_iff_true a_iff_false theorem not_iff (a b : Bool) : ¬ (a ↔ b) ↔ (¬ a ↔ b) := or_elim (em b) (λ Hb, calc (¬ (a ↔ b)) = (¬ (a ↔ true)) : { eqt_intro Hb } ... = ¬ a : { a_iff_true a } ... = ¬ a ↔ true : { symm (a_iff_true (¬ a)) } ... = ¬ a ↔ b : { symm (eqt_intro Hb) }) (λ Hnb, calc (¬ (a ↔ b)) = (¬ (a ↔ false)) : { eqf_intro Hnb } ... = ¬ ¬ a : { a_iff_false a } ... = ¬ a ↔ false : { symm (a_iff_false (¬ a)) } ... = ¬ a ↔ b : { symm (eqf_intro Hnb) }) theorem not_iff_elim {a b : Bool} (H : ¬ (a ↔ b)) : (¬ a) ↔ b := (not_iff a b) ◂ H -- Congruence theorems for contextual simplification -- Simplify a → b, by first simplifying a to c using the fact that ¬ b is true, and then -- b to d using the fact that c is true theorem imp_congrr {a b c d : Bool} (H_ac : ∀ (H_nb : ¬ b), a = c) (H_bd : ∀ (H_c : c), b = d) : (a → b) = (c → d) := or_elim (em b) (λ H_b : b, or_elim (em c) (λ H_c : c, calc (a → b) = (a → true) : { eqt_intro H_b } ... = true : imp_truer a ... = (c → true) : symm (imp_truer c) ... = (c → b) : { symm (eqt_intro H_b) } ... = (c → d) : { H_bd H_c }) (λ H_nc : ¬ c, calc (a → b) = (a → true) : { eqt_intro H_b } ... = true : imp_truer a ... = (false → d) : symm (imp_falsel d) ... = (c → d) : { symm (eqf_intro H_nc) })) (λ H_nb : ¬ b, or_elim (em c) (λ H_c : c, calc (a → b) = (c → b) : { H_ac H_nb } ... = (c → d) : { H_bd H_c }) (λ H_nc : ¬ c, calc (a → b) = (c → b) : { H_ac H_nb } ... = (false → b) : { eqf_intro H_nc } ... = true : imp_falsel b ... = (false → d) : symm (imp_falsel d) ... = (c → d) : { symm (eqf_intro H_nc) })) -- Simplify a → b, by first simplifying b to d using the fact that a is true, and then -- b to d using the fact that ¬ d is true. -- This kind of congruence seems to be useful in very rare cases. theorem imp_congrl {a b c d : Bool} (H_bd : ∀ (H_a : a), b = d) (H_ac : ∀ (H_nd : ¬ d), a = c) : (a → b) = (c → d) := or_elim (em a) (λ H_a : a, or_elim (em d) (λ H_d : d, calc (a → b) = (a → d) : { H_bd H_a } ... = (a → true) : { eqt_intro H_d } ... = true : imp_truer a ... = (c → true) : symm (imp_truer c) ... = (c → d) : { symm (eqt_intro H_d) }) (λ H_nd : ¬ d, calc (a → b) = (c → b) : { H_ac H_nd } ... = (c → d) : { H_bd H_a })) (λ H_na : ¬ a, or_elim (em d) (λ H_d : d, calc (a → b) = (false → b) : { eqf_intro H_na } ... = true : imp_falsel b ... = (c → true) : symm (imp_truer c) ... = (c → d) : { symm (eqt_intro H_d) }) (λ H_nd : ¬ d, calc (a → b) = (false → b) : { eqf_intro H_na } ... = true : imp_falsel b ... = (false → d) : symm (imp_falsel d) ... = (a → d) : { symm (eqf_intro H_na) } ... = (c → d) : { H_ac H_nd })) -- (Common case) simplify a to c, and then b to d using the fact that c is true theorem imp_congr {a b c d : Bool} (H_ac : a = c) (H_bd : ∀ (H_c : c), b = d) : (a → b) = (c → d) := imp_congrr (λ H, H_ac) H_bd theorem or_congrr {a b c d : Bool} (H_ac : ∀ (H_nb : ¬ b), a = c) (H_bd : ∀ (H_nc : ¬ c), b = d) : a ∨ b ↔ c ∨ d := have H1 : (¬ a → b) ↔ (¬ c → d), from imp_congrr (λ H_nb : ¬ b, congr2 not (H_ac H_nb)) H_bd, calc (a ∨ b) = (¬ a → b) : or_imp _ _ ... = (¬ c → d) : H1 ... = c ∨ d : symm (or_imp _ _) theorem or_congrl {a b c d : Bool} (H_bd : ∀ (H_na : ¬ a), b = d) (H_ac : ∀ (H_nd : ¬ d), a = c) : a ∨ b ↔ c ∨ d := have H1 : (¬ a → b) ↔ (¬ c → d), from imp_congrl H_bd (λ H_nd : ¬ d, congr2 not (H_ac H_nd)), calc (a ∨ b) = (¬ a → b) : or_imp _ _ ... = (¬ c → d) : H1 ... = c ∨ d : symm (or_imp _ _) -- (Common case) simplify a to c, and then b to d using the fact that ¬ c is true theorem or_congr {a b c d : Bool} (H_ac : a = c) (H_bd : ∀ (H_nc : ¬ c), b = d) : a ∨ b ↔ c ∨ d := or_congrr (λ H, H_ac) H_bd theorem and_congrr {a b c d : Bool} (H_ac : ∀ (H_b : b), a = c) (H_bd : ∀ (H_c : c), b = d) : a ∧ b ↔ c ∧ d := have H1 : ¬ (a → ¬ b) ↔ ¬ (c → ¬ d), from congr2 not (imp_congrr (λ (H_nnb : ¬ ¬ b), H_ac (not_not_elim H_nnb)) (λ H_c : c, congr2 not (H_bd H_c))), calc (a ∧ b) = ¬ (a → ¬ b) : and_imp _ _ ... = ¬ (c → ¬ d) : H1 ... = c ∧ d : symm (and_imp _ _) theorem and_congrl {a b c d : Bool} (H_bd : ∀ (H_a : a), b = d) (H_ac : ∀ (H_d : d), a = c) : a ∧ b ↔ c ∧ d := have H1 : ¬ (a → ¬ b) ↔ ¬ (c → ¬ d), from congr2 not (imp_congrl (λ H_a : a, congr2 not (H_bd H_a)) (λ (H_nnd : ¬ ¬ d), H_ac (not_not_elim H_nnd))), calc (a ∧ b) = ¬ (a → ¬ b) : and_imp _ _ ... = ¬ (c → ¬ d) : H1 ... = c ∧ d : symm (and_imp _ _) -- (Common case) simplify a to c, and then b to d using the fact that c is true theorem and_congr {a b c d : Bool} (H_ac : a = c) (H_bd : ∀ (H_c : c), b = d) : a ∧ b ↔ c ∧ d := and_congrr (λ H, H_ac) H_bd theorem forall_or_distributer {A : (Type U)} (p : Bool) (φ : A → Bool) : (∀ x, p ∨ φ x) = (p ∨ ∀ x, φ x) := boolext (assume H : (∀ x, p ∨ φ x), or_elim (em p) (λ Hp : p, or_introl Hp (∀ x, φ x)) (λ Hnp : ¬ p, or_intror p (take x, resolve1 (H x) Hnp))) (assume H : (p ∨ ∀ x, φ x), take x, or_elim H (λ H1 : p, or_introl H1 (φ x)) (λ H2 : (∀ x, φ x), or_intror p (H2 x))) theorem forall_or_distributel {A : Type} (p : Bool) (φ : A → Bool) : (∀ x, φ x ∨ p) = ((∀ x, φ x) ∨ p) := boolext (assume H : (∀ x, φ x ∨ p), or_elim (em p) (λ Hp : p, or_intror (∀ x, φ x) Hp) (λ Hnp : ¬ p, or_introl (take x, resolve2 (H x) Hnp) p)) (assume H : (∀ x, φ x) ∨ p, take x, or_elim H (λ H1 : (∀ x, φ x), or_introl (H1 x) p) (λ H2 : p, or_intror (φ x) H2)) theorem forall_and_distribute {A : (Type U)} (φ ψ : A → Bool) : (∀ x, φ x ∧ ψ x) ↔ (∀ x, φ x) ∧ (∀ x, ψ x) := boolext (assume H : (∀ x, φ x ∧ ψ x), and_intro (take x, and_eliml (H x)) (take x, and_elimr (H x))) (assume H : (∀ x, φ x) ∧ (∀ x, ψ x), take x, and_intro (and_eliml H x) (and_elimr H x)) theorem exists_and_distributer {A : (Type U)} (p : Bool) (φ : A → Bool) : (∃ x, p ∧ φ x) ↔ p ∧ ∃ x, φ x := boolext (assume H : (∃ x, p ∧ φ x), obtain (w : A) (Hw : p ∧ φ w), from H, and_intro (and_eliml Hw) (exists_intro w (and_elimr Hw))) (assume H : (p ∧ ∃ x, φ x), obtain (w : A) (Hw : φ w), from (and_elimr H), exists_intro w (and_intro (and_eliml H) Hw)) theorem exists_or_distribute {A : (Type U)} (φ ψ : A → Bool) : (∃ x, φ x ∨ ψ x) ↔ (∃ x, φ x) ∨ (∃ x, ψ x) := boolext (assume H : (∃ x, φ x ∨ ψ x), obtain (w : A) (Hw : φ w ∨ ψ w), from H, or_elim Hw (λ Hw1 : φ w, or_introl (exists_intro w Hw1) (∃ x, ψ x)) (λ Hw2 : ψ w, or_intror (∃ x, φ x) (exists_intro w Hw2))) (assume H : (∃ x, φ x) ∨ (∃ x, ψ x), or_elim H (λ H1 : (∃ x, φ x), obtain (w : A) (Hw : φ w), from H1, exists_intro w (or_introl Hw (ψ w))) (λ H2 : (∃ x, ψ x), obtain (w : A) (Hw : ψ w), from H2, exists_intro w (or_intror (φ w) Hw))) theorem eq_exists_intro {A : (Type U)} {P Q : A → Bool} (H : ∀ x : A, P x ↔ Q x) : (∃ x : A, P x) ↔ (∃ x : A, Q x) := boolext (assume Hex, obtain w Pw, from Hex, exists_intro w ((H w) ◂ Pw)) (assume Hex, obtain w Qw, from Hex, exists_intro w ((symm (H w)) ◂ Qw)) theorem not_forall (A : (Type U)) (P : A → Bool) : ¬ (∀ x : A, P x) ↔ (∃ x : A, ¬ P x) := boolext (assume H, by_contradiction (assume N : ¬ (∃ x, ¬ P x), absurd (take x, not_not_elim (not_exists_elim N x)) H)) (assume (H : ∃ x, ¬ P x) (N : ∀ x, P x), obtain w Hw, from H, absurd (N w) Hw) theorem not_forall_elim {A : (Type U)} {P : A → Bool} (H : ¬ (∀ x : A, P x)) : ∃ x : A, ¬ P x := (not_forall A P) ◂ H theorem exists_and_distributel {A : (Type U)} (p : Bool) (φ : A → Bool) : (∃ x, φ x ∧ p) ↔ (∃ x, φ x) ∧ p := calc (∃ x, φ x ∧ p) = (∃ x, p ∧ φ x) : eq_exists_intro (λ x, and_comm (φ x) p) ... = (p ∧ (∃ x, φ x)) : exists_and_distributer p φ ... = ((∃ x, φ x) ∧ p) : and_comm p (∃ x, φ x) theorem exists_imp_distribute {A : (Type U)} (φ ψ : A → Bool) : (∃ x, φ x → ψ x) ↔ ((∀ x, φ x) → (∃ x, ψ x)) := calc (∃ x, φ x → ψ x) = (∃ x, ¬ φ x ∨ ψ x) : eq_exists_intro (λ x, imp_or (φ x) (ψ x)) ... = (∃ x, ¬ φ x) ∨ (∃ x, ψ x) : exists_or_distribute _ _ ... = ¬ (∀ x, φ x) ∨ (∃ x, ψ x) : { symm (not_forall A φ) } ... = (∀ x, φ x) → (∃ x, ψ x) : symm (imp_or _ _) theorem forall_uninhabited {A : (Type U)} {B : A → Bool} (H : ¬ inhabited A) : ∀ x, B x := by_contradiction (assume N : ¬ (∀ x, B x), obtain w Hw, from not_forall_elim N, absurd (inhabited_intro w) H) theorem allext {A : (Type U)} {B C : A → Bool} (H : ∀ x : A, B x = C x) : (∀ x : A, B x) = (∀ x : A, C x) := boolext (assume Hl, take x, (H x) ◂ (Hl x)) (assume Hr, take x, (symm (H x)) ◂ (Hr x)) theorem proj1_congr {A : (Type U)} {B : A → (Type U)} {a b : sig x, B x} (H : a = b) : proj1 a = proj1 b := subst (refl (proj1 a)) H theorem proj2_congr {A B : (Type U)} {a b : A # B} (H : a = b) : proj2 a = proj2 b := subst (refl (proj2 a)) H theorem hproj2_congr {A : (Type U)} {B : A → (Type U)} {a b : sig x, B x} (H : a = b) : proj2 a == proj2 b := subst (hrefl (proj2 a)) H -- Up to this point, we proved all theorems using just reflexivity, substitution and case (proof by cases) -- Function extensionality axiom funext {A : (Type U)} {B : A → (Type U)} {f g : ∀ x : A, B x} (H : ∀ x : A, f x = g x) : f = g -- Eta is a consequence of function extensionality theorem eta {A : (Type U)} {B : A → (Type U)} (f : ∀ x : A, B x) : (λ x : A, f x) = f := funext (λ x : A, refl (f x)) -- Epsilon (Hilbert's operator) variable eps {A : (Type U)} (H : inhabited A) (P : A → Bool) : A alias ε : eps axiom eps_ax {A : (Type U)} (H : inhabited A) {P : A → Bool} (a : A) : P a → P (ε H P) theorem eps_th {A : (Type U)} {P : A → Bool} (a : A) : P a → P (ε (inhabited_intro a) P) := assume H : P a, @eps_ax A (inhabited_intro a) P a H theorem eps_singleton {A : (Type U)} (H : inhabited A) (a : A) : ε H (λ x, x = a) = a := let P := λ x, x = a, Ha : P a := refl a in eps_ax H a Ha -- A function space (∀ x : A, B x) is inhabited if forall a : A, we have inhabited (B a) theorem inhabited_dfun {A : (Type U)} {B : A → (Type U)} (Hn : ∀ a, inhabited (B a)) : inhabited (∀ x, B x) := inhabited_intro (λ x, ε (Hn x) (λ y, true)) theorem inhabited_fun (A : (Type U)) {B : (Type U)} (H : inhabited B) : inhabited (A → B) := inhabited_intro (λ x, ε H (λ y, true)) theorem exists_to_eps {A : (Type U)} {P : A → Bool} (H : ∃ x, P x) : P (ε (inhabited_ex_intro H) P) := obtain (w : A) (Hw : P w), from H, @eps_ax _ (inhabited_ex_intro H) P w Hw theorem axiom_of_choice {A : (Type U)} {B : A → (Type U)} {R : ∀ x : A, B x → Bool} (H : ∀ x, ∃ y, R x y) : ∃ f, ∀ x, R x (f x) := exists_intro (λ x, ε (inhabited_ex_intro (H x)) (λ y, R x y)) -- witness for f (λ x, exists_to_eps (H x)) -- proof that witness satisfies ∀ x, R x (f x) theorem skolem_th {A : (Type U)} {B : A → (Type U)} {P : ∀ x : A, B x → Bool} : (∀ x, ∃ y, P x y) ↔ ∃ f, (∀ x, P x (f x)) := iff_intro (λ H : (∀ x, ∃ y, P x y), @axiom_of_choice _ _ P H) (λ H : (∃ f, (∀ x, P x (f x))), take x, obtain (fw : ∀ x, B x) (Hw : ∀ x, P x (fw x)), from H, exists_intro (fw x) (Hw x)) -- if-then-else expression, we define it using Hilbert's operator definition ite {A : (Type U)} (c : Bool) (a b : A) : A := ε (inhabited_intro a) (λ r, (c → r = a) ∧ (¬ c → r = b)) notation 45 if _ then _ else _ : ite theorem if_true {A : (Type U)} (a b : A) : (if true then a else b) = a := calc (if true then a else b) = ε (inhabited_intro a) (λ r, (true → r = a) ∧ (¬ true → r = b)) : refl (if true then a else b) ... = ε (inhabited_intro a) (λ r, r = a) : by simp ... = a : eps_singleton (inhabited_intro a) a theorem if_false {A : (Type U)} (a b : A) : (if false then a else b) = b := calc (if false then a else b) = ε (inhabited_intro a) (λ r, (false → r = a) ∧ (¬ false → r = b)) : refl (if false then a else b) ... = ε (inhabited_intro a) (λ r, r = b) : by simp ... = b : eps_singleton (inhabited_intro a) b theorem if_a_a {A : (Type U)} (c : Bool) (a: A) : (if c then a else a) = a := or_elim (em c) (λ H : c, calc (if c then a else a) = (if true then a else a) : { eqt_intro H } ... = a : if_true a a) (λ H : ¬ c, calc (if c then a else a) = (if false then a else a) : { eqf_intro H } ... = a : if_false a a) add_rewrite if_true if_false if_a_a theorem if_congr {A : (Type U)} {b c : Bool} {x y u v : A} (H_bc : b = c) (H_xu : ∀ (H_c : c), x = u) (H_yv : ∀ (H_nc : ¬ c), y = v) : (if b then x else y) = if c then u else v := or_elim (em c) (λ H_c : c, calc (if b then x else y) = if c then x else y : { H_bc } ... = if true then x else y : { eqt_intro H_c } ... = x : if_true _ _ ... = u : H_xu H_c ... = if true then u else v : symm (if_true _ _) ... = if c then u else v : { symm (eqt_intro H_c) }) (λ H_nc : ¬ c, calc (if b then x else y) = if c then x else y : { H_bc } ... = if false then x else y : { eqf_intro H_nc } ... = y : if_false _ _ ... = v : H_yv H_nc ... = if false then u else v : symm (if_false _ _) ... = if c then u else v : { symm (eqf_intro H_nc) }) theorem if_imp_then {a b c : Bool} (H : if a then b else c) : a → b := assume Ha : a, eqt_elim (calc b = if true then b else c : symm (if_true b c) ... = if a then b else c : { symm (eqt_intro Ha) } ... = true : eqt_intro H) theorem if_imp_else {a b c : Bool} (H : if a then b else c) : ¬ a → c := assume Hna : ¬ a, eqt_elim (calc c = if false then b else c : symm (if_false b c) ... = if a then b else c : { symm (eqf_intro Hna) } ... = true : eqt_intro H) theorem app_if_distribute {A B : (Type U)} (c : Bool) (f : A → B) (a b : A) : f (if c then a else b) = if c then f a else f b := or_elim (em c) (λ Hc : c , calc f (if c then a else b) = f (if true then a else b) : { eqt_intro Hc } ... = f a : { if_true a b } ... = if true then f a else f b : symm (if_true (f a) (f b)) ... = if c then f a else f b : { symm (eqt_intro Hc) }) (λ Hnc : ¬ c, calc f (if c then a else b) = f (if false then a else b) : { eqf_intro Hnc } ... = f b : { if_false a b } ... = if false then f a else f b : symm (if_false (f a) (f b)) ... = if c then f a else f b : { symm (eqf_intro Hnc) }) theorem eq_if_distributer {A : (Type U)} (c : Bool) (a b v : A) : (v = (if c then a else b)) = if c then v = a else v = b := app_if_distribute c (eq v) a b theorem eq_if_distributel {A : (Type U)} (c : Bool) (a b v : A) : ((if c then a else b) = v) = if c then a = v else b = v := app_if_distribute c (λ x, x = v) a b set_opaque exists true set_opaque not true set_opaque or true set_opaque and true set_opaque implies true set_opaque ite true set_opaque eq true definition injective {A B : (Type U)} (f : A → B) := ∀ x1 x2, f x1 = f x2 → x1 = x2 definition non_surjective {A B : (Type U)} (f : A → B) := ∃ y, ∀ x, ¬ f x = y -- The set of individuals, we need to assert the existence of one infinite set variable ind : Type -- ind is infinite, i.e., there is a function f s.t. f is injective, and not surjective axiom infinity : ∃ f : ind → ind, injective f ∧ non_surjective f -- Pair extensionality axiom pairext {A : (Type U)} {B : A → (Type U)} (a b : sig x, B x) (H1 : proj1 a = proj1 b) (H2 : proj2 a == proj2 b) : a = b theorem pair_proj_eq {A : (Type U)} {B : A → (Type U)} (a : sig x, B x) : pair (proj1 a) (proj2 a) = a := have Heq1 : proj1 (pair (proj1 a) (proj2 a)) = proj1 a, from refl (proj1 a), have Heq2 : proj2 (pair (proj1 a) (proj2 a)) == proj2 a, from hrefl (proj2 a), show pair (proj1 a) (proj2 a) = a, from pairext (pair (proj1 a) (proj2 a)) a Heq1 Heq2 theorem pair_congr {A : (Type U)} {B : A → (Type U)} {a a' : A} {b : B a} {b' : B a'} (Ha : a = a') (Hb : b == b') : (pair a b) = (pair a' b') := have Heq1 : proj1 (pair a b) = proj1 (pair a' b'), from Ha, have Heq2 : proj2 (pair a b) == proj2 (pair a' b'), from Hb, show (pair a b) = (pair a' b'), from pairext (pair a b) (pair a' b') Heq1 Heq2 theorem pairext_proj {A B : (Type U)} {p : A # B} {a : A} {b : B} (H1 : proj1 p = a) (H2 : proj2 p = b) : p = (pair a b) := pairext p (pair a b) H1 (to_heq H2) theorem hpairext_proj {A : (Type U)} {B : A → (Type U)} {p : sig x, B x} {a : A} {b : B a} (H1 : proj1 p = a) (H2 : proj2 p == b) : p = (pair a b) := pairext p (pair a b) H1 H2 -- Heterogeneous equality axioms and theorems -- We can "type-cast" an A expression into a B expression, if we can prove that A == B -- Remark: we use A == B instead of A = B, because A = B would be type incorrect. -- A = B is actually (@eq (Type U) A B), which is type incorrect because -- the first argument of eq must have type (Type U) and the type of (Type U) is (Type U+1) variable cast {A B : (Type U+1)} : A == B → A → B axiom cast_heq {A B : (Type U+1)} (H : A == B) (a : A) : cast H a == a -- Heterogeneous equality satisfies the usual properties: symmetry, transitivity, congruence, function extensionality, ... -- Heterogeneous version of subst axiom hsubst {A B : (Type U+1)} {a : A} {b : B} (P : ∀ T : (Type U+1), T → Bool) : P A a → a == b → P B b theorem hsymm {A B : (Type U+1)} {a : A} {b : B} (H : a == b) : b == a := hsubst (λ (T : (Type U+1)) (x : T), x == a) (hrefl a) H theorem htrans {A B C : (Type U+1)} {a : A} {b : B} {c : C} (H1 : a == b) (H2 : b == c) : a == c := hsubst (λ (T : (Type U+1)) (x : T), a == x) H1 H2 axiom hcongr {A A' : (Type U+1)} {B : A → (Type U+1)} {B' : A' → (Type U+1)} {f : ∀ x, B x} {f' : ∀ x, B' x} {a : A} {a' : A'} : f == f' → a == a' → f a == f' a' axiom hfunext {A A' : (Type U+1)} {B : A → (Type U+1)} {B' : A' → (Type U+1)} {f : ∀ x, B x} {f' : ∀ x, B' x} : A == A' → (∀ x x', x == x' → f x == f' x') → f == f' axiom hpiext {A A' : (Type U+1)} {B : A → (Type U+1)} {B' : A' → (Type U+1)} : A == A' → (∀ x x', x == x' → B x == B' x') → (∀ x, B x) == (∀ x, B' x) axiom hsigext {A A' : (Type U+1)} {B : A → (Type U+1)} {B' : A' → (Type U+1)} : A == A' → (∀ x x', x == x' → B x == B' x') → (sig x, B x) == (sig x, B' x) -- Heterogeneous version of the allext theorem theorem hallext {A A' : (Type U+1)} {B : A → Bool} {B' : A' → Bool} (Ha : A == A') (Hb : ∀ x x', x == x' → B x = B' x') : (∀ x, B x) = (∀ x, B' x) := to_eq (hpiext Ha (λ x x' Heq, to_heq (Hb x x' Heq))) -- Simpler version of hfunext axiom, we use it to build proofs theorem hsfunext {A : (Type U)} {B B' : A → (Type U)} {f : ∀ x, B x} {f' : ∀ x, B' x} : (∀ x, f x == f' x) → f == f' := λ Hb, hfunext (hrefl A) (λ (x x' : A) (Heq : x == x'), let s1 : f x == f' x := Hb x, s2 : f' x == f' x' := hcongr (hrefl f') Heq in htrans s1 s2) theorem heq_congr {A B : (Type U)} {a a' : A} {b b' : B} (H1 : a = a') (H2 : b = b') : (a == b) = (a' == b') := calc (a == b) = (a' == b) : { H1 } ... = (a' == b') : { H2 } theorem hheq_congr {A A' B B' : (Type U+1)} {a : A} {a' : A'} {b : B} {b' : B'} (H1 : a == a') (H2 : b == b') : (a == b) = (a' == b') := have Heq1 : (a == b) = (a' == b), from (hsubst (λ (T : (Type U+1)) (x : T), (a == b) = (x == b)) (refl (a == b)) H1), have Heq2 : (a' == b) = (a' == b'), from (hsubst (λ (T : (Type U+1)) (x : T), (a' == b) = (a' == x)) (refl (a' == b)) H2), show (a == b) = (a' == b'), from trans Heq1 Heq2 theorem type_eq {A B : (Type U)} {a : A} {b : B} (H : a == b) : A == B := hsubst (λ (T : (Type U+1)) (x : T), A == T) (hrefl A) H -- Some theorems that are useful for applying simplifications. theorem cast_eq {A : (Type U)} (H : A == A) (a : A) : cast H a = a := to_eq (cast_heq H a) theorem cast_trans {A B C : (Type U)} (Hab : A == B) (Hbc : B == C) (a : A) : cast Hbc (cast Hab a) = cast (htrans Hab Hbc) a := have Heq1 : cast Hbc (cast Hab a) == cast Hab a, from cast_heq Hbc (cast Hab a), have Heq2 : cast Hab a == a, from cast_heq Hab a, have Heq3 : cast (htrans Hab Hbc) a == a, from cast_heq (htrans Hab Hbc) a, show cast Hbc (cast Hab a) = cast (htrans Hab Hbc) a, from to_eq (htrans (htrans Heq1 Heq2) (hsymm Heq3)) theorem cast_pull {A : (Type U)} {B B' : A → (Type U)} (f : ∀ x, B x) (a : A) (Hb : (∀ x, B x) == (∀ x, B' x)) (Hba : (B a) == (B' a)) : cast Hb f a = cast Hba (f a) := have s1 : cast Hb f a == f a, from hcongr (cast_heq Hb f) (hrefl a), have s2 : cast Hba (f a) == f a, from cast_heq Hba (f a), show cast Hb f a = cast Hba (f a), from to_eq (htrans s1 (hsymm s2)) -- Proof irrelevance is true in the set theoretic model we have for Lean. axiom proof_irrel {a : Bool} (H1 H2 : a) : H1 = H2 -- A more general version of proof_irrel that can be be derived using proof_irrel, heq axioms and boolext/iff_intro theorem hproof_irrel {a b : Bool} (H1 : a) (H2 : b) : H1 == H2 := let Hab : a == b := to_heq (iff_intro (assume Ha, H2) (assume Hb, H1)), H1b : b := cast Hab H1, H1_eq_H1b : H1 == H1b := hsymm (cast_heq Hab H1), H1b_eq_H2 : H1b == H2 := to_heq (proof_irrel H1b H2) in htrans H1_eq_H1b H1b_eq_H2