/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn Theorems about the unit type -/ open is_equiv equiv option eq pointed is_trunc function namespace unit protected definition eta : Π(u : unit), ⋆ = u | eta ⋆ := idp definition unit_equiv_option_empty [constructor] : unit ≃ option empty := begin fapply equiv.MK, { intro u, exact none}, { intro e, exact star}, { intro e, cases e, reflexivity, contradiction}, { intro u, cases u, reflexivity}, end -- equivalences involving unit and other type constructors are in the file -- of the other constructor /- pointed and truncated unit -/ definition punit [constructor] : Set* := pSet.mk' unit notation `unit*` := punit definition unit_arrow_eq {X : Type} (f : unit → X) : (λx, f ⋆) = f := by apply eq_of_homotopy; intro u; induction u; reflexivity open funext definition unit_arrow_eq_compose {X Y : Type} (g : X → Y) (f : unit → X) : unit_arrow_eq (g ∘ f) = ap (λf, g ∘ f) (unit_arrow_eq f) := begin apply eq_of_fn_eq_fn' apd10, refine right_inv apd10 _ ⬝ _, refine _ ⬝ ap apd10 (!compose_eq_of_homotopy)⁻¹, refine _ ⬝ (right_inv apd10 _)⁻¹, apply eq_of_homotopy, intro u, induction u, reflexivity end end unit open unit is_trunc