/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn Basic group theory -/ import algebra.category.category algebra.inf_group_theory .homomorphism types.pointed2 algebra.trunc_group open eq algebra pointed function is_trunc pi equiv is_equiv sigma sigma.ops trunc set_option class.force_new true namespace group definition pointed_Group [instance] [constructor] (G : Group) : pointed G := pointed.mk 1 definition Group.struct' [instance] [reducible] (G : Group) : group G := Group.struct G definition ab_group_pSet_of_Group [instance] (G : AbGroup) : ab_group (pSet_of_Group G) := AbGroup.struct G definition group_pSet_of_Group [instance] [priority 900] (G : Group) : group (pSet_of_Group G) := Group.struct G /- left and right actions -/ definition is_equiv_mul_right [constructor] {A : Group} (a : A) : is_equiv (λb, b * a) := adjointify _ (λb : A, b * a⁻¹) (λb, !inv_mul_cancel_right) (λb, !mul_inv_cancel_right) definition right_action [constructor] {A : Group} (a : A) : A ≃ A := equiv.mk _ (is_equiv_mul_right a) definition is_equiv_add_right [constructor] {A : AddGroup} (a : A) : is_equiv (λb, b + a) := adjointify _ (λb : A, b - a) (λb, !neg_add_cancel_right) (λb, !add_neg_cancel_right) definition add_right_action [constructor] {A : AddGroup} (a : A) : A ≃ A := equiv.mk _ (is_equiv_add_right a) /- homomorphisms -/ structure homomorphism (G₁ G₂ : Group) : Type := (φ : G₁ → G₂) (p : is_mul_hom φ) infix ` →g `:55 := homomorphism abbreviation group_fun [unfold 3] [coercion] [reducible] := @homomorphism.φ definition homomorphism.struct [unfold 3] [instance] [priority 900] {G₁ G₂ : Group} (φ : G₁ →g G₂) : is_mul_hom φ := homomorphism.p φ definition homomorphism.mulstruct [instance] [priority 2000] {G₁ G₂ : Group} (φ : G₁ →g G₂) : is_mul_hom φ := homomorphism.p φ definition homomorphism.addstruct [instance] [priority 2000] {G₁ G₂ : AddGroup} (φ : G₁ →g G₂) : is_add_hom φ := homomorphism.p φ variables {G G₁ G₂ G₃ : Group} {g h : G₁} {ψ : G₂ →g G₃} {φ₁ φ₂ : G₁ →g G₂} (φ : G₁ →g G₂) definition to_respect_mul /- φ -/ (g h : G₁) : φ (g * h) = φ g * φ h := respect_mul φ g h theorem to_respect_one /- φ -/ : φ 1 = 1 := respect_one φ theorem to_respect_inv /- φ -/ (g : G₁) : φ g⁻¹ = (φ g)⁻¹ := respect_inv φ g definition to_is_embedding_homomorphism /- φ -/ (H : Π{g}, φ g = 1 → g = 1) : is_embedding φ := is_embedding_of_is_mul_hom φ @H variables (G₁ G₂) definition is_set_homomorphism [instance] : is_set (G₁ →g G₂) := begin have H : G₁ →g G₂ ≃ Σ(f : G₁ → G₂), Π(g₁ g₂ : G₁), f (g₁ * g₂) = f g₁ * f g₂, begin fapply equiv.MK, { intro φ, induction φ, constructor, exact (respect_mul φ)}, { intro v, induction v with f H, constructor, exact H}, { intro v, induction v, reflexivity}, { intro φ, induction φ, reflexivity} end, exact is_trunc_equiv_closed_rev 0 H _ end variables {G₁ G₂} definition pmap_of_homomorphism [constructor] /- φ -/ : G₁ →* G₂ := pmap.mk φ begin esimp, exact respect_one φ end definition homomorphism_change_fun [constructor] {G₁ G₂ : Group} (φ : G₁ →g G₂) (f : G₁ → G₂) (p : φ ~ f) : G₁ →g G₂ := homomorphism.mk f (λg h, (p (g * h))⁻¹ ⬝ to_respect_mul φ g h ⬝ ap011 mul (p g) (p h)) definition homomorphism_eq (p : φ₁ ~ φ₂) : φ₁ = φ₂ := begin induction φ₁ with φ₁ q₁, induction φ₂ with φ₂ q₂, esimp at p, induction p, exact ap (homomorphism.mk φ₁) !is_prop.elim end section additive variables {H₁ H₂ : AddGroup} (χ : H₁ →g H₂) definition to_respect_add /- χ -/ (g h : H₁) : χ (g + h) = χ g + χ h := respect_add χ g h theorem to_respect_zero /- χ -/ : χ 0 = 0 := respect_zero χ theorem to_respect_neg /- χ -/ (g : H₁) : χ (-g) = -(χ g) := respect_neg χ g end additive section add_mul variables {H₁ : AddGroup} {H₂ : Group} (χ : H₁ →g H₂) definition to_respect_add_mul /- χ -/ (g h : H₁) : χ (g + h) = χ g * χ h := to_respect_mul χ g h theorem to_respect_zero_one /- χ -/ : χ 0 = 1 := to_respect_one χ theorem to_respect_neg_inv /- χ -/ (g : H₁) : χ (-g) = (χ g)⁻¹ := to_respect_inv χ g end add_mul section mul_add variables {H₁ : Group} {H₂ : AddGroup} (χ : H₁ →g H₂) definition to_respect_mul_add /- χ -/ (g h : H₁) : χ (g * h) = χ g + χ h := to_respect_mul χ g h theorem to_respect_one_zero /- χ -/ : χ 1 = 0 := to_respect_one χ theorem to_respect_inv_neg /- χ -/ (g : H₁) : χ g⁻¹ = -(χ g) := to_respect_inv χ g end mul_add /- categorical structure of groups + homomorphisms -/ definition homomorphism_compose [constructor] [trans] [reducible] (ψ : G₂ →g G₃) (φ : G₁ →g G₂) : G₁ →g G₃ := homomorphism.mk (ψ ∘ φ) (is_mul_hom_compose _ _) variable (G) definition homomorphism_id [constructor] [refl] : G →g G := homomorphism.mk (@id G) (is_mul_hom_id G) variable {G} abbreviation gid [constructor] := @homomorphism_id infixr ` ∘g `:75 := homomorphism_compose notation 1 := homomorphism_id _ definition homomorphism_compose_eq (ψ : G₂ →g G₃) (φ : G₁ →g G₂) (g : G₁) : (ψ ∘g φ) g = ψ (φ g) := by reflexivity structure isomorphism (A B : Group) := (to_hom : A →g B) (is_equiv_to_hom : is_equiv to_hom) infix ` ≃g `:25 := isomorphism attribute isomorphism.to_hom [coercion] attribute isomorphism.is_equiv_to_hom [instance] attribute isomorphism._trans_of_to_hom [unfold 3] definition equiv_of_isomorphism [constructor] (φ : G₁ ≃g G₂) : G₁ ≃ G₂ := equiv.mk φ _ definition pequiv_of_isomorphism [constructor] (φ : G₁ ≃g G₂) : G₁ ≃* G₂ := pequiv.mk φ begin esimp, exact _ end begin esimp, exact respect_one φ end definition isomorphism_of_equiv [constructor] (φ : G₁ ≃ G₂) (p : Πg₁ g₂, φ (g₁ * g₂) = φ g₁ * φ g₂) : G₁ ≃g G₂ := isomorphism.mk (homomorphism.mk φ p) !to_is_equiv definition isomorphism.MK [constructor] (φ : G₁ →g G₂) (ψ : G₂ →g G₁) (p : φ ∘g ψ ~ gid G₂) (q : ψ ∘g φ ~ gid G₁) : G₁ ≃g G₂ := isomorphism.mk φ (adjointify φ ψ p q) definition to_ginv [constructor] (φ : G₁ ≃g G₂) : G₂ →g G₁ := homomorphism.mk φ⁻¹ abstract begin intro g₁ g₂, apply inj' φ, rewrite [respect_mul φ, +right_inv φ] end end definition isomorphism_of_eq [constructor] {G₁ G₂ : Group} (φ : G₁ = G₂) : G₁ ≃g G₂ := isomorphism_of_equiv (equiv_of_eq (ap Group.carrier φ)) begin intros, induction φ, reflexivity end definition isomorphism_ap {A : Type} (F : A → Group) {a b : A} (p : a = b) : F a ≃g F b := isomorphism_of_eq (ap F p) variable (G) definition isomorphism.refl [refl] [constructor] : G ≃g G := isomorphism.mk 1 !is_equiv_id variable {G} definition isomorphism.symm [symm] [constructor] (φ : G₁ ≃g G₂) : G₂ ≃g G₁ := isomorphism.mk (to_ginv φ) !is_equiv_inv definition isomorphism.trans [trans] [constructor] (φ : G₁ ≃g G₂) (ψ : G₂ ≃g G₃) : G₁ ≃g G₃ := isomorphism.mk (ψ ∘g φ) (is_equiv_compose ψ φ _ _) definition isomorphism.eq_trans [trans] [constructor] {G₁ G₂ : Group} {G₃ : Group} (φ : G₁ = G₂) (ψ : G₂ ≃g G₃) : G₁ ≃g G₃ := proof isomorphism.trans (isomorphism_of_eq φ) ψ qed definition isomorphism.trans_eq [trans] [constructor] {G₁ : Group} {G₂ G₃ : Group} (φ : G₁ ≃g G₂) (ψ : G₂ = G₃) : G₁ ≃g G₃ := isomorphism.trans φ (isomorphism_of_eq ψ) postfix `⁻¹ᵍ`:(max + 1) := isomorphism.symm infixl ` ⬝g `:75 := isomorphism.trans infixl ` ⬝gp `:75 := isomorphism.trans_eq infixl ` ⬝pg `:75 := isomorphism.eq_trans definition pmap_of_isomorphism [constructor] (φ : G₁ ≃g G₂) : G₁ →* G₂ := pequiv_of_isomorphism φ definition to_fun_isomorphism_trans {G H K : Group} (φ : G ≃g H) (ψ : H ≃g K) : φ ⬝g ψ ~ ψ ∘ φ := by reflexivity definition add_homomorphism (G H : AddGroup) : Type := homomorphism G H infix ` →a `:55 := add_homomorphism abbreviation agroup_fun [coercion] [unfold 3] [reducible] {G H : AddGroup} (φ : G →a H) : G → H := φ definition add_homomorphism.struct [instance] {G H : AddGroup} (φ : G →a H) : is_add_hom φ := homomorphism.addstruct φ definition add_homomorphism.mk [constructor] {G H : AddGroup} (φ : G → H) (h : is_add_hom φ) : G →g H := homomorphism.mk φ h definition add_homomorphism_compose [constructor] [trans] [reducible] {G₁ G₂ G₃ : AddGroup} (ψ : G₂ →a G₃) (φ : G₁ →a G₂) : G₁ →a G₃ := add_homomorphism.mk (ψ ∘ φ) (is_add_hom_compose _ _) definition add_homomorphism_id [constructor] [refl] (G : AddGroup) : G →a G := add_homomorphism.mk (@id G) (is_add_hom_id G) abbreviation aid [constructor] := @add_homomorphism_id infixr ` ∘a `:75 := add_homomorphism_compose definition to_respect_add' {H₁ H₂ : AddGroup} (χ : H₁ →a H₂) (g h : H₁) : χ (g + h) = χ g + χ h := respect_add χ g h theorem to_respect_zero' {H₁ H₂ : AddGroup} (χ : H₁ →a H₂) : χ 0 = 0 := respect_zero χ theorem to_respect_neg' {H₁ H₂ : AddGroup} (χ : H₁ →a H₂) (g : H₁) : χ (-g) = -(χ g) := respect_neg χ g definition pmap_of_homomorphism_gid (G : Group) : pmap_of_homomorphism (gid G) ~* pid G := begin fapply phomotopy_of_homotopy, reflexivity end definition pmap_of_homomorphism_gcompose {G H K : Group} (ψ : H →g K) (φ : G →g H) : pmap_of_homomorphism (ψ ∘g φ) ~* pmap_of_homomorphism ψ ∘* pmap_of_homomorphism φ := begin fapply phomotopy_of_homotopy, reflexivity end definition pmap_of_homomorphism_phomotopy {G H : Group} {φ ψ : G →g H} (H : φ ~ ψ) : pmap_of_homomorphism φ ~* pmap_of_homomorphism ψ := begin fapply phomotopy_of_homotopy, exact H end definition pequiv_of_isomorphism_trans {G₁ G₂ G₃ : Group} (φ : G₁ ≃g G₂) (ψ : G₂ ≃g G₂) : pequiv_of_isomorphism (φ ⬝g ψ) ~* pequiv_of_isomorphism ψ ∘* pequiv_of_isomorphism φ := begin apply phomotopy_of_homotopy, reflexivity end protected definition homomorphism.sigma_char [constructor] (A B : Group) : (A →g B) ≃ Σ(f : A → B), is_mul_hom f := begin fapply equiv.MK, {intro F, exact ⟨F, _⟩ }, {intro p, cases p with f H, exact (homomorphism.mk f H) }, {intro p, cases p, reflexivity }, {intro F, cases F, reflexivity }, end definition homomorphism_pathover {A : Type} {a a' : A} (p : a = a') {B : A → Group} {C : A → Group} (f : B a →g C a) (g : B a' →g C a') (r : homomorphism.φ f =[p] homomorphism.φ g) : f =[p] g := begin fapply pathover_of_fn_pathover_fn, { intro a, apply homomorphism.sigma_char }, { fapply sigma_pathover, exact r, apply is_prop.elimo } end protected definition isomorphism.sigma_char [constructor] (A B : Group) : (A ≃g B) ≃ Σ(f : A →g B), is_equiv f := begin fapply equiv.MK, {intro F, exact ⟨F, _⟩ }, {intro p, exact (isomorphism.mk p.1 p.2) }, {intro p, cases p, reflexivity }, {intro F, cases F, reflexivity }, end definition isomorphism_pathover {A : Type} {a a' : A} (p : a = a') {B : A → Group} {C : A → Group} (f : B a ≃g C a) (g : B a' ≃g C a') (r : pathover (λa, B a → C a) f p g) : f =[p] g := begin fapply pathover_of_fn_pathover_fn, { intro a, apply isomorphism.sigma_char }, { fapply sigma_pathover, apply homomorphism_pathover, exact r, apply is_prop.elimo } end definition isomorphism_eq {G H : Group} {φ ψ : G ≃g H} (p : φ ~ ψ) : φ = ψ := begin induction φ with φ φe, induction ψ with ψ ψe, exact apd011 isomorphism.mk (homomorphism_eq p) !is_prop.elimo end definition is_set_isomorphism [instance] (G H : Group) : is_set (G ≃g H) := begin have H : G ≃g H ≃ Σ(f : G →g H), is_equiv f, begin fapply equiv.MK, { intro φ, induction φ, constructor, assumption }, { intro v, induction v, constructor, assumption }, { intro v, induction v, reflexivity }, { intro φ, induction φ, reflexivity } end, exact is_trunc_equiv_closed_rev _ H _ end definition trivial_homomorphism (A B : Group) : A →g B := homomorphism.mk (λa, 1) (λa a', (mul_one 1)⁻¹) definition trivial_add_homomorphism (A B : AddGroup) : A →a B := homomorphism.mk (λa, 0) (λa a', (add_zero 0)⁻¹) /- the group structure on homomorphisms between two abelian groups -/ definition homomorphism_add [constructor] {G H : AddAbGroup} (φ ψ : G →a H) : G →a H := add_homomorphism.mk (λg, φ g + ψ g) abstract begin intro g g', refine ap011 add !to_respect_add' !to_respect_add' ⬝ _, refine !add.assoc ⬝ ap (add _) (!add.assoc⁻¹ ⬝ ap (λx, x + _) !add.comm ⬝ !add.assoc) ⬝ !add.assoc⁻¹ end end definition homomorphism_mul [constructor] {G H : AbGroup} (φ ψ : G →g H) : G →g H := homomorphism.mk (λg, φ g * ψ g) (to_respect_add (homomorphism_add φ ψ)) definition homomorphism_inv [constructor] {G H : AbGroup} (φ : G →g H) : G →g H := begin apply homomorphism.mk (λg, (φ g)⁻¹), intro g h, refine ap (λx, x⁻¹) (to_respect_mul φ g h) ⬝ !mul_inv ⬝ !mul.comm, end definition ab_group_homomorphism [constructor] (G H : AbGroup) : ab_group (G →g H) := begin refine ab_group.mk _ homomorphism_mul _ (trivial_homomorphism G H) _ _ homomorphism_inv _ _, { intros φ₁ φ₂ φ₃, apply homomorphism_eq, intro g, apply mul.assoc }, { intro φ, apply homomorphism_eq, intro g, apply one_mul }, { intro φ, apply homomorphism_eq, intro g, apply mul_one }, { intro φ, apply homomorphism_eq, intro g, apply mul.left_inv }, { intro φ ψ, apply homomorphism_eq, intro g, apply mul.comm } end definition aghomomorphism [constructor] (G H : AbGroup) : AbGroup := AbGroup.mk (G →g H) (ab_group_homomorphism G H) infixr ` →gg `:56 := aghomomorphism /- some properties of binary homomorphisms -/ definition pmap_of_homomorphism2 [constructor] {G H K : AbGroup} (φ : G →g H →gg K) : G →* H →** K := pmap.mk (λg, pmap_of_homomorphism (φ g)) (eq_of_phomotopy (phomotopy_of_homotopy (ap010 group_fun (to_respect_one φ)))) definition homomorphism_apply [constructor] (G H : AbGroup) (g : G) : (G →gg H) →g H := begin fapply homomorphism.mk, { intro φ, exact φ g }, { intros φ φ', reflexivity } end definition homomorphism_swap [constructor] {G H K : AbGroup} (φ : G →g H →gg K) : H →g G →gg K := begin fapply homomorphism.mk, { intro h, exact homomorphism_apply H K h ∘g φ }, { intro h h', apply homomorphism_eq, intro g, exact to_respect_mul (φ g) h h' } end /- given an equivalence A ≃ B we can transport a group structure on A to a group structure on B -/ section parameters {A B : Type} (f : A ≃ B) [group A] definition group_equiv_mul (b b' : B) : B := f (f⁻¹ᶠ b * f⁻¹ᶠ b') definition group_equiv_one : B := f one definition group_equiv_inv (b : B) : B := f (f⁻¹ᶠ b)⁻¹ local infix * := group_equiv_mul local postfix ^ := group_equiv_inv local notation 1 := group_equiv_one theorem group_equiv_mul_assoc (b₁ b₂ b₃ : B) : (b₁ * b₂) * b₃ = b₁ * (b₂ * b₃) := by rewrite [↑group_equiv_mul, +left_inv f, mul.assoc] theorem group_equiv_one_mul (b : B) : 1 * b = b := by rewrite [↑group_equiv_mul, ↑group_equiv_one, left_inv f, one_mul, right_inv f] theorem group_equiv_mul_one (b : B) : b * 1 = b := by rewrite [↑group_equiv_mul, ↑group_equiv_one, left_inv f, mul_one, right_inv f] theorem group_equiv_mul_left_inv (b : B) : b^ * b = 1 := by rewrite [↑group_equiv_mul, ↑group_equiv_one, ↑group_equiv_inv, +left_inv f, mul.left_inv] definition group_equiv_closed [constructor] : group B := ⦃group, mul := group_equiv_mul, mul_assoc := group_equiv_mul_assoc, one := group_equiv_one, one_mul := group_equiv_one_mul, mul_one := group_equiv_mul_one, inv := group_equiv_inv, mul_left_inv := group_equiv_mul_left_inv, is_set_carrier := is_trunc_equiv_closed 0 f _ ⦄ end section variables {A B : Type} (f : A ≃ B) [ab_group A] definition group_equiv_mul_comm (b b' : B) : group_equiv_mul f b b' = group_equiv_mul f b' b := by rewrite [↑group_equiv_mul, mul.comm] definition ab_group_equiv_closed [constructor] : ab_group B := ⦃ab_group, group_equiv_closed f, mul_comm := group_equiv_mul_comm f⦄ end variable (G) /- the trivial group -/ open unit definition group_unit [constructor] : group unit := group.mk _ (λx y, star) (λx y z, idp) star (unit.rec idp) (unit.rec idp) (λx, star) (λx, idp) definition ab_group_unit [constructor] : ab_group unit := ⦃ab_group, group_unit, mul_comm := λx y, idp⦄ definition trivial_group [constructor] : Group := Group.mk _ group_unit abbreviation G0 := trivial_group definition AbGroup_of_Group.{u} (G : Group.{u}) (H : Π x y : G, x * y = y * x) : AbGroup.{u} := begin induction G, fapply AbGroup.mk, assumption, exact ⦃ab_group, struct', mul_comm := H⦄ end definition trivial_ab_group : AbGroup.{0} := begin fapply AbGroup_of_Group trivial_group, intro x y, reflexivity end definition trivial_group_of_is_contr (H : is_contr G) : G ≃g G0 := begin fapply isomorphism_of_equiv, { exact equiv_unit_of_is_contr _ _ }, { intros, reflexivity } end definition isomorphism_of_is_contr {G H : Group} (hG : is_contr G) (hH : is_contr H) : G ≃g H := trivial_group_of_is_contr G _ ⬝g (trivial_group_of_is_contr H _)⁻¹ᵍ definition ab_group_of_is_contr (A : Type) (H : is_contr A) : ab_group A := have ab_group unit, from ab_group_unit, ab_group_equiv_closed (equiv_unit_of_is_contr A _)⁻¹ᵉ definition group_of_is_contr (A : Type) (H : is_contr A) : group A := have ab_group A, from ab_group_of_is_contr A H, by apply _ definition ab_group_lift_unit : ab_group (lift unit) := ab_group_of_is_contr (lift unit) _ definition trivial_ab_group_lift : AbGroup := AbGroup.mk _ ab_group_lift_unit definition from_trivial_ab_group (A : AbGroup) : trivial_ab_group →g A := trivial_homomorphism trivial_ab_group A definition is_embedding_from_trivial_ab_group (A : AbGroup) : is_embedding (from_trivial_ab_group A) := begin fapply is_embedding_of_is_injective, intro x y p, induction x, induction y, reflexivity end definition to_trivial_ab_group (A : AbGroup) : A →g trivial_ab_group := trivial_homomorphism A trivial_ab_group variable {G} /- A group where the point in the pointed type corresponds with 1 in the group. We need this structure when we are given a pointed type, and want to say that there is a group structure on it which is compatible with the point. This is used in chain complexes. -/ structure pgroup [class] (X : Type*) extends semigroup X, has_inv X := (pt_mul : Πa, mul pt a = a) (mul_pt : Πa, mul a pt = a) (mul_left_inv_pt : Πa, mul (inv a) a = pt) definition group_of_pgroup [reducible] [instance] (X : Type*) [H : pgroup X] : group X := ⦃group, H, one := pt, one_mul := pgroup.pt_mul , mul_one := pgroup.mul_pt, mul_left_inv := pgroup.mul_left_inv_pt⦄ definition pgroup_of_group (X : Type*) [H : group X] (p : one = pt :> X) : pgroup X := begin cases X with X x, esimp at *, induction p, exact ⦃pgroup, H, pt_mul := one_mul, mul_pt := mul_one, mul_left_inv_pt := mul.left_inv⦄ end definition pgroup_of_Group (X : Group) : pgroup X := pgroup_of_group _ idp definition Group_of_pgroup (G : Type*) [pgroup G] : Group := Group.mk G _ definition pgroup_Group [instance] (G : Group) : pgroup G := ⦃ pgroup, Group.struct G, pt_mul := one_mul, mul_pt := mul_one, mul_left_inv_pt := mul.left_inv ⦄ /- equality of groups and abelian groups -/ definition group.to_has_mul {A : Type} (H : group A) : has_mul A := _ definition group.to_has_inv {A : Type} (H : group A) : has_inv A := _ definition group.to_has_one {A : Type} (H : group A) : has_one A := _ local attribute group.to_has_mul group.to_has_inv [coercion] universe variable l variables {A B : Type.{l}} definition group_eq {G H : group A} (same_mul' : Π(g h : A), @mul A G g h = @mul A H g h) : G = H := begin have foo : Π(g : A), @inv A G g = (@inv A G g * g) * @inv A H g, from λg, !mul_inv_cancel_right⁻¹, cases G with Gs Gm Gh1 G1 Gh2 Gh3 Gi Gh4, cases H with Hs Hm Hh1 H1 Hh2 Hh3 Hi Hh4, have same_mul : Gm = Hm, from eq_of_homotopy2 same_mul', cases same_mul, have same_one : G1 = H1, from calc G1 = Hm G1 H1 : Hh3 ... = H1 : Gh2, have same_inv : Gi = Hi, from eq_of_homotopy (take g, calc Gi g = Hm (Hm (Gi g) g) (Hi g) : foo ... = Hm G1 (Hi g) : by rewrite Gh4 ... = Hi g : Gh2), cases same_one, cases same_inv, have ps : Gs = Hs, from !is_prop.elim, have ph1 : Gh1 = Hh1, from !is_prop.elim, have ph2 : Gh2 = Hh2, from !is_prop.elim, have ph3 : Gh3 = Hh3, from !is_prop.elim, have ph4 : Gh4 = Hh4, from !is_prop.elim, cases ps, cases ph1, cases ph2, cases ph3, cases ph4, reflexivity end definition group_pathover {G : group A} {H : group B} {p : A = B} (resp_mul : Π(g h : A), cast p (g * h) = cast p g * cast p h) : G =[p] H := begin induction p, apply pathover_idp_of_eq, exact group_eq (resp_mul) end definition Group_eq_of_eq {G H : Group} (p : Group.carrier G = Group.carrier H) (resp_mul : Π(g h : G), cast p (g * h) = cast p g * cast p h) : G = H := begin cases G with Gc G, cases H with Hc H, apply (apd011 Group.mk p), exact group_pathover resp_mul end definition Group_eq {G H : Group} (f : Group.carrier G ≃ Group.carrier H) (resp_mul : Π(g h : G), f (g * h) = f g * f h) : G = H := Group_eq_of_eq (ua f) (λg h, !cast_ua ⬝ resp_mul g h ⬝ ap011 mul !cast_ua⁻¹ !cast_ua⁻¹) definition eq_of_isomorphism {G₁ G₂ : Group} (φ : G₁ ≃g G₂) : G₁ = G₂ := Group_eq (equiv_of_isomorphism φ) (respect_mul φ) definition ab_group.to_has_mul {A : Type} (H : ab_group A) : has_mul A := _ local attribute ab_group.to_has_mul [coercion] definition ab_group_eq {A : Type} {G H : ab_group A} (same_mul : Π(g h : A), @mul A G g h = @mul A H g h) : G = H := begin have g_eq : @ab_group.to_group A G = @ab_group.to_group A H, from group_eq same_mul, cases G with Gs Gm Gh1 G1 Gh2 Gh3 Gi Gh4 Gh5, cases H with Hs Hm Hh1 H1 Hh2 Hh3 Hi Hh4 Hh5, have pm : Gm = Hm, from ap (@mul _ ∘ group.to_has_mul) g_eq, have pi : Gi = Hi, from ap (@inv _ ∘ group.to_has_inv) g_eq, have p1 : G1 = H1, from ap (@one _ ∘ group.to_has_one) g_eq, induction pm, induction pi, induction p1, have ps : Gs = Hs, from !is_prop.elim, have ph1 : Gh1 = Hh1, from !is_prop.elim, have ph2 : Gh2 = Hh2, from !is_prop.elim, have ph3 : Gh3 = Hh3, from !is_prop.elim, have ph4 : Gh4 = Hh4, from !is_prop.elim, have ph5 : Gh5 = Hh5, from !is_prop.elim, induction ps, induction ph1, induction ph2, induction ph3, induction ph4, induction ph5, reflexivity end definition ab_group_pathover {A B : Type} {G : ab_group A} {H : ab_group B} {p : A = B} (resp_mul : Π(g h : A), cast p (g * h) = cast p g * cast p h) : G =[p] H := begin induction p, apply pathover_idp_of_eq, exact ab_group_eq (resp_mul) end definition AbGroup_eq_of_isomorphism {G₁ G₂ : AbGroup} (φ : G₁ ≃g G₂) : G₁ = G₂ := begin induction G₁, induction G₂, apply apd011 AbGroup.mk (ua (equiv_of_isomorphism φ)), apply ab_group_pathover, intro g h, exact !cast_ua ⬝ respect_mul φ g h ⬝ ap011 mul !cast_ua⁻¹ !cast_ua⁻¹ end definition trivial_group_of_is_contr' (G : Group) [H : is_contr G] : G = G0 := eq_of_isomorphism (trivial_group_of_is_contr G _) definition pequiv_of_isomorphism_of_eq {G₁ G₂ : Group} (p : G₁ = G₂) : pequiv_of_isomorphism (isomorphism_of_eq p) = pequiv_of_eq (ap pType_of_Group p) := begin induction p, apply pequiv_eq, fapply phomotopy.mk, { intro g, reflexivity }, { apply is_prop.elim } end /- relation with infgroups -/ -- todo: define homomorphism in terms of inf_homomorphism and similar for isomorphism? open infgroup definition homomorphism_of_inf_homomorphism [constructor] {G H : Group} (φ : G →∞g H) : G →g H := homomorphism.mk φ (inf_homomorphism.struct φ) definition inf_homomorphism_of_homomorphism [constructor] {G H : Group} (φ : G →g H) : G →∞g H := inf_homomorphism.mk φ (homomorphism.struct φ) definition isomorphism_of_inf_isomorphism [constructor] {G H : Group} (φ : G ≃∞g H) : G ≃g H := isomorphism.mk (homomorphism_of_inf_homomorphism φ) (inf_isomorphism.is_equiv_to_hom φ) definition inf_isomorphism_of_isomorphism [constructor] {G H : Group} (φ : G ≃g H) : G ≃∞g H := inf_isomorphism.mk (inf_homomorphism_of_homomorphism φ) (isomorphism.is_equiv_to_hom φ) definition gtrunc_functor {A B : InfGroup} (f : A →∞g B) : gtrunc A →g gtrunc B := begin apply homomorphism.mk (trunc_functor 0 f), intros x x', induction x with a, induction x' with a', apply ap tr, exact respect_mul f a a' end definition gtrunc_isomorphism_gtrunc {A B : InfGroup} (f : A ≃∞g B) : gtrunc A ≃g gtrunc B := isomorphism_of_equiv (trunc_equiv_trunc 0 (equiv_of_inf_isomorphism f)) (to_respect_mul (gtrunc_functor f)) definition gtr [constructor] (X : InfGroup) : X →∞g gtrunc X := inf_homomorphism.mk tr homotopy2.rfl definition gtrunc_isomorphism [constructor] (X : InfGroup) [H : is_set X] : gtrunc X ≃∞g X := (inf_isomorphism_of_equiv (trunc_equiv 0 X)⁻¹ᵉ homotopy2.rfl)⁻¹ᵍ⁸ definition is_set_group_inf [instance] (G : Group) : group G := Group.struct G end group