/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: logic.axioms.hilbert Authors: Leonardo de Moura, Jeremy Avigad Follows Coq.Logic.ClassicalEpsilon (but our definition of "inhabited" is the constructive one). -/ import logic.quantifiers import data.subtype data.sum open subtype inhabited nonempty /- the axiom -/ -- In the presence of classical logic, we could prove this from a weaker statement: -- axiom indefinite_description {A : Type} {P : A->Prop} (H : ∃x, P x) : {x : A, P x} axiom strong_indefinite_description {A : Type} (P : A → Prop) (H : nonempty A) : { x | (∃y : A, P y) → P x} theorem exists_true_of_nonempty {A : Type} (H : nonempty A) : ∃x : A, true := nonempty.elim H (take x, exists.intro x trivial) theorem inhabited_of_nonempty {A : Type} (H : nonempty A) : inhabited A := let u : {x | (∃y : A, true) → true} := strong_indefinite_description (λa, true) H in inhabited.mk (elt_of u) theorem inhabited_of_exists {A : Type} {P : A → Prop} (H : ∃x, P x) : inhabited A := inhabited_of_nonempty (obtain w Hw, from H, nonempty.intro w) /- the Hilbert epsilon function -/ opaque definition epsilon {A : Type} [H : nonempty A] (P : A → Prop) : A := let u : {x | (∃y, P y) → P x} := strong_indefinite_description P H in elt_of u theorem epsilon_spec_aux {A : Type} (H : nonempty A) (P : A → Prop) (Hex : ∃y, P y) : P (@epsilon A H P) := let u : {x | (∃y, P y) → P x} := strong_indefinite_description P H in has_property u Hex theorem epsilon_spec {A : Type} {P : A → Prop} (Hex : ∃y, P y) : P (@epsilon A (nonempty_of_exists Hex) P) := epsilon_spec_aux (nonempty_of_exists Hex) P Hex theorem epsilon_singleton {A : Type} (a : A) : @epsilon A (nonempty.intro a) (λx, x = a) = a := epsilon_spec (exists.intro a (eq.refl a)) definition some {A : Type} {P : A → Prop} (H : ∃x, P x) : A := @epsilon A (nonempty_of_exists H) P theorem some_spec {A : Type} {P : A → Prop} (H : ∃x, P x) : P (some H) := epsilon_spec H /- the axiom of choice -/ theorem axiom_of_choice {A : Type} {B : A → Type} {R : Πx, B x → Prop} (H : ∀x, ∃y, R x y) : ∃f, ∀x, R x (f x) := have H : ∀x, R x (some (H x)), from take x, some_spec (H x), exists.intro _ H theorem skolem {A : Type} {B : A → Type} {P : Πx, B x → Prop} : (∀x, ∃y, P x y) ↔ ∃f, (∀x, P x (f x)) := iff.intro (assume H : (∀x, ∃y, P x y), axiom_of_choice H) (assume H : (∃f, (∀x, P x (f x))), take x, obtain (fw : ∀x, B x) (Hw : ∀x, P x (fw x)), from H, exists.intro (fw x) (Hw x))