/- Copyright (c) 2016 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn, Clive Newstead -/ import algebra.homotopy_group .connectedness open eq is_trunc trunc_index pointed algebra trunc nat homotopy fiber pointed namespace is_trunc -- Lemma 8.3.1 theorem trivial_homotopy_group_of_is_trunc (A : Type*) (n k : ℕ) [is_trunc n A] (H : n ≤ k) : is_contr (πg[k+1] A) := begin apply is_trunc_trunc_of_is_trunc, apply is_contr_loop_of_is_trunc, apply @is_trunc_of_le A n _, rewrite [succ_sub_two_succ k], exact of_nat_le_of_nat H, end -- Lemma 8.3.2 theorem trivial_homotopy_group_of_is_conn (A : Type*) {k n : ℕ} (H : k ≤ n) [is_conn n A] : is_contr (π[k] A) := begin have H3 : is_contr (ptrunc k A), from is_conn_of_le A (of_nat_le_of_nat H), have H4 : is_contr (Ω[k](ptrunc k A)), from !is_trunc_loop_of_is_trunc, apply is_trunc_equiv_closed_rev, { apply equiv_of_pequiv (phomotopy_group_pequiv_loop_ptrunc k A)} end -- Corollary 8.3.3 section open sphere.ops sphere_index theorem homotopy_group_sphere_le (n k : ℕ) (H : k < n) : is_contr (π[k] (S. n)) := begin cases n with n, { exfalso, apply not_lt_zero, exact H}, { have H2 : k ≤ n, from le_of_lt_succ H, apply @(trivial_homotopy_group_of_is_conn _ H2)} end end theorem is_contr_HG_fiber_of_is_connected {A B : Type*} (k n : ℕ) (f : A →* B) [H : is_conn_fun n f] (H2 : k ≤ n) : is_contr (π[k] (pfiber f)) := @(trivial_homotopy_group_of_is_conn (pfiber f) H2) (H pt) end is_trunc