/- Copyright (c) 2016 Jacob Gross. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jacob Gross The order topology. -/ import data.set theories.topology.basic algebra.interval open algebra eq.ops set interval topology namespace order_topology variables {X : Type} [linear_strong_order_pair X] definition linorder_generators : set (set X) := {y | ∃ a, y = '(a, ∞) } ∪ {y | ∃ a, y = '(-∞, a)} definition linorder_topology [instance] [reducible] : topology X := topology.generated_by linorder_generators theorem Open_Ioi {a : X} : Open '(a, ∞) := (generators_mem_topology_generated_by linorder_generators) (!mem_unionl (exists.intro a rfl)) theorem Open_Iio {a : X} : Open '(-∞, a) := (generators_mem_topology_generated_by linorder_generators) (!mem_unionr (exists.intro a rfl)) theorem closed_Ici (a : X) : closed '[a,∞) := !compl_Ici⁻¹ ▸ Open_Iio theorem closed_Iic (a : X) : closed '(-∞,a] := have '(a, ∞) = -'(-∞,a], from ext(take x, iff.intro (assume H, not_le_of_gt H) (assume H, lt_of_not_ge H)), this ▸ Open_Ioi theorem Open_Ioo (a b : X) : Open '(a, b) := Open_inter !Open_Ioi !Open_Iio theorem closed_Icc (a b : X) : closed '[a, b] := closed_inter !closed_Ici !closed_Iic section open classical theorem linorder_separation {x y : X} : x < y → ∃ a b, (x < a ∧ b < y) ∧ '(-∞, a) ∩ '(b, ∞) = ∅ := suppose x < y, if H1 : ∃ z, x < z ∧ z < y then obtain z (Hz : x < z ∧ z < y), from H1, have '(-∞, z) ∩ '(z, ∞) = ∅, from ext (take r, iff.intro (assume H, absurd (!lt.trans (and.elim_left H) (and.elim_right H)) !lt.irrefl) (assume H, !not.elim !not_mem_empty H)), exists.intro z (exists.intro z (and.intro Hz this)) else have '(-∞, y) ∩ '(x, ∞) = ∅, from ext(take r, iff.intro (assume H, absurd (exists.intro r (iff.elim_left and.comm H)) H1) (assume H, !not.elim !not_mem_empty H)), exists.intro y (exists.intro x (and.intro (and.intro `x < y` `x < y`) this)) end protected definition T2_space.of_linorder_topology [reducible] [trans_instance] : T2_space X := ⦃ T2_space, linorder_topology, T2 := abstract take x y, assume H, or.elim (lt_or_gt_of_ne H) (assume H, obtain a [b Hab], from linorder_separation H, show _, from exists.intro '(-∞, a) (exists.intro '(b, ∞) (and.intro Open_Iio (and.intro Open_Ioi (iff.elim_left and.assoc Hab))))) (assume H, obtain a [b Hab], from linorder_separation H, have Hx : x ∈ '(b, ∞), from and.elim_right (and.elim_left Hab), have Hy : y ∈ '(-∞, a), from and.elim_left (and.elim_left Hab), have Hi : '(b, ∞) ∩ '(-∞, a) = ∅, from !inter_comm ▸ (and.elim_right Hab), have (Open '(b,∞)) ∧ (Open '(-∞, a)) ∧ x ∈ '(b, ∞) ∧ y ∈ '(-∞, a) ∧ '(b, ∞) ∩ '(-∞, a) = ∅, from and.intro Open_Ioi (and.intro Open_Iio (and.intro Hx (and.intro Hy Hi))), show _, from exists.intro '(b,∞) (exists.intro '(-∞, a) this)) end ⦄ end order_topology