Set: pp::colors Set: pp::unicode Failed to solve A : (Type U), A' : (Type U), H : A == A' ⊢ (?M::3 ≈ (Type U)) ⊕ (?M::3 ≈ (Type M)) ⊕ (?M::3 ≈ (Type 1)) ⊕ (?M::3 ≈ Type) ⊕ (?M::3 ≈ Bool) Destruct/Decompose A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::3 ≺ (Type U) (line: 1: pos: 44) Type of argument 1 must be convertible to the expected type in the application of Symm::explicit with arguments: ?M::0 ?M::1 ?M::2 H Failed to solve A : (Type U), A' : (Type U), H : A == A' ⊢ (?M::5 ≈ (Type U)) ⊕ (?M::5 ≈ (Type U+1)) Destruct/Decompose A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U) ≺ ?M::5 Propagate type, ?M::2 : ?M::5 Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ A' ≈ ?M::2 Destruct/Decompose A : (Type U), A' : (Type U), H : A == A' ⊢ A == A' ≺ ?M::1 == ?M::2 (line: 1: pos: 44) Type of argument 4 must be convertible to the expected type in the application of Symm::explicit with arguments: ?M::0 ?M::1 ?M::2 H Failed to solve A : (Type U), A' : (Type U), H : A == A' ⊢ (?M::0 ≈ (Type U)) ⊕ (?M::0 ≈ (Type U+1)) Destruct/Decompose A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U) ≺ ?M::0 Substitution A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::5 ≺ ?M::0 (line: 1: pos: 44) Type of argument 3 must be convertible to the expected type in the application of Symm::explicit with arguments: ?M::0 ?M::1 ?M::2 H Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::5 ≈ (Type U) Assumption 1 Failed to solve A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U+1) ≺ (Type U) Substitution A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U+1) ≺ ?M::3 Propagate type, ?M::0 : ?M::3 Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::0 ≈ (Type U) Assumption 3 Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::3 ≈ (Type U) Assumption 0 Failed to solve A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U+2) ≺ (Type U) Substitution A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U+2) ≺ ?M::3 Propagate type, ?M::0 : ?M::3 Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::0 ≈ (Type U+1) Assumption 4 Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::3 ≈ (Type U) Assumption 0 Failed to solve A : (Type U), A' : (Type U), H : A == A' ⊢ (?M::0 ≈ (Type U+1)) ⊕ (?M::0 ≈ (Type U+2)) Destruct/Decompose A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U+1) ≺ ?M::0 Substitution A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::5 ≺ ?M::0 (line: 1: pos: 44) Type of argument 3 must be convertible to the expected type in the application of Symm::explicit with arguments: ?M::0 ?M::1 ?M::2 H Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::5 ≈ (Type U+1) Assumption 5 Failed to solve A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U+2) ≺ (Type U) Substitution A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U+2) ≺ ?M::3 Propagate type, ?M::0 : ?M::3 Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::0 ≈ (Type U+1) Assumption 7 Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::3 ≈ (Type U) Assumption 0 Failed to solve A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U+3) ≺ (Type U) Substitution A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U+3) ≺ ?M::3 Propagate type, ?M::0 : ?M::3 Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::0 ≈ (Type U+2) Assumption 8 Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::3 ≈ (Type U) Assumption 0 Failed to solve A : (Type U), A' : (Type U), H : A == A' ⊢ (?M::5 ≈ (Type U)) ⊕ (?M::5 ≈ (Type U+1)) Destruct/Decompose A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U) ≺ ?M::5 Propagate type, ?M::2 : ?M::5 Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ A' ≈ ?M::2 Destruct/Decompose A : (Type U), A' : (Type U), H : A == A' ⊢ A == A' ≺ ?M::1 == ?M::2 (line: 1: pos: 44) Type of argument 4 must be convertible to the expected type in the application of Symm::explicit with arguments: ?M::0 ?M::1 ?M::2 H Failed to solve A : (Type U), A' : (Type U), H : A == A' ⊢ (?M::0 ≈ (Type U)) ⊕ (?M::0 ≈ (Type U+1)) Destruct/Decompose A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U) ≺ ?M::0 Substitution A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::5 ≺ ?M::0 (line: 1: pos: 44) Type of argument 3 must be convertible to the expected type in the application of Symm::explicit with arguments: ?M::0 ?M::1 ?M::2 H Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::5 ≈ (Type U) Assumption 10 Failed to solve A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U+1) ≺ (Type M) Substitution A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U+1) ≺ ?M::3 Propagate type, ?M::0 : ?M::3 Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::0 ≈ (Type U) Assumption 12 Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::3 ≈ (Type M) Assumption 9 Failed to solve A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U+2) ≺ (Type M) Substitution A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U+2) ≺ ?M::3 Propagate type, ?M::0 : ?M::3 Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::0 ≈ (Type U+1) Assumption 13 Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::3 ≈ (Type M) Assumption 9 Failed to solve A : (Type U), A' : (Type U), H : A == A' ⊢ (?M::0 ≈ (Type U+1)) ⊕ (?M::0 ≈ (Type U+2)) Destruct/Decompose A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U+1) ≺ ?M::0 Substitution A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::5 ≺ ?M::0 (line: 1: pos: 44) Type of argument 3 must be convertible to the expected type in the application of Symm::explicit with arguments: ?M::0 ?M::1 ?M::2 H Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::5 ≈ (Type U+1) Assumption 14 Failed to solve A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U+2) ≺ (Type M) Substitution A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U+2) ≺ ?M::3 Propagate type, ?M::0 : ?M::3 Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::0 ≈ (Type U+1) Assumption 16 Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::3 ≈ (Type M) Assumption 9 Failed to solve A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U+3) ≺ (Type M) Substitution A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U+3) ≺ ?M::3 Propagate type, ?M::0 : ?M::3 Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::0 ≈ (Type U+2) Assumption 17 Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::3 ≈ (Type M) Assumption 9 Failed to solve A : (Type U), A' : (Type U), H : A == A' ⊢ (?M::5 ≈ (Type U)) ⊕ (?M::5 ≈ (Type U+1)) Destruct/Decompose A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U) ≺ ?M::5 Propagate type, ?M::2 : ?M::5 Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ A' ≈ ?M::2 Destruct/Decompose A : (Type U), A' : (Type U), H : A == A' ⊢ A == A' ≺ ?M::1 == ?M::2 (line: 1: pos: 44) Type of argument 4 must be convertible to the expected type in the application of Symm::explicit with arguments: ?M::0 ?M::1 ?M::2 H Failed to solve A : (Type U), A' : (Type U), H : A == A' ⊢ (?M::0 ≈ (Type U)) ⊕ (?M::0 ≈ (Type U+1)) Destruct/Decompose A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U) ≺ ?M::0 Substitution A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::5 ≺ ?M::0 (line: 1: pos: 44) Type of argument 3 must be convertible to the expected type in the application of Symm::explicit with arguments: ?M::0 ?M::1 ?M::2 H Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::5 ≈ (Type U) Assumption 19 Failed to solve A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U+1) ≺ (Type 1) Substitution A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U+1) ≺ ?M::3 Propagate type, ?M::0 : ?M::3 Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::0 ≈ (Type U) Assumption 21 Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::3 ≈ (Type 1) Assumption 18 Failed to solve A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U+2) ≺ (Type 1) Substitution A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U+2) ≺ ?M::3 Propagate type, ?M::0 : ?M::3 Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::0 ≈ (Type U+1) Assumption 22 Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::3 ≈ (Type 1) Assumption 18 Failed to solve A : (Type U), A' : (Type U), H : A == A' ⊢ (?M::0 ≈ (Type U+1)) ⊕ (?M::0 ≈ (Type U+2)) Destruct/Decompose A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U+1) ≺ ?M::0 Substitution A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::5 ≺ ?M::0 (line: 1: pos: 44) Type of argument 3 must be convertible to the expected type in the application of Symm::explicit with arguments: ?M::0 ?M::1 ?M::2 H Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::5 ≈ (Type U+1) Assumption 23 Failed to solve A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U+2) ≺ (Type 1) Substitution A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U+2) ≺ ?M::3 Propagate type, ?M::0 : ?M::3 Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::0 ≈ (Type U+1) Assumption 25 Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::3 ≈ (Type 1) Assumption 18 Failed to solve A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U+3) ≺ (Type 1) Substitution A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U+3) ≺ ?M::3 Propagate type, ?M::0 : ?M::3 Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::0 ≈ (Type U+2) Assumption 26 Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::3 ≈ (Type 1) Assumption 18 Failed to solve A : (Type U), A' : (Type U), H : A == A' ⊢ (?M::5 ≈ (Type U)) ⊕ (?M::5 ≈ (Type U+1)) Destruct/Decompose A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U) ≺ ?M::5 Propagate type, ?M::2 : ?M::5 Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ A' ≈ ?M::2 Destruct/Decompose A : (Type U), A' : (Type U), H : A == A' ⊢ A == A' ≺ ?M::1 == ?M::2 (line: 1: pos: 44) Type of argument 4 must be convertible to the expected type in the application of Symm::explicit with arguments: ?M::0 ?M::1 ?M::2 H Failed to solve A : (Type U), A' : (Type U), H : A == A' ⊢ (?M::0 ≈ (Type U)) ⊕ (?M::0 ≈ (Type U+1)) Destruct/Decompose A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U) ≺ ?M::0 Substitution A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::5 ≺ ?M::0 (line: 1: pos: 44) Type of argument 3 must be convertible to the expected type in the application of Symm::explicit with arguments: ?M::0 ?M::1 ?M::2 H Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::5 ≈ (Type U) Assumption 28 Failed to solve A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U+1) ≺ Type Substitution A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U+1) ≺ ?M::3 Propagate type, ?M::0 : ?M::3 Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::0 ≈ (Type U) Assumption 30 Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::3 ≈ Type Assumption 27 Failed to solve A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U+2) ≺ Type Substitution A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U+2) ≺ ?M::3 Propagate type, ?M::0 : ?M::3 Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::0 ≈ (Type U+1) Assumption 31 Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::3 ≈ Type Assumption 27 Failed to solve A : (Type U), A' : (Type U), H : A == A' ⊢ (?M::0 ≈ (Type U+1)) ⊕ (?M::0 ≈ (Type U+2)) Destruct/Decompose A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U+1) ≺ ?M::0 Substitution A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::5 ≺ ?M::0 (line: 1: pos: 44) Type of argument 3 must be convertible to the expected type in the application of Symm::explicit with arguments: ?M::0 ?M::1 ?M::2 H Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::5 ≈ (Type U+1) Assumption 32 Failed to solve A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U+2) ≺ Type Substitution A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U+2) ≺ ?M::3 Propagate type, ?M::0 : ?M::3 Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::0 ≈ (Type U+1) Assumption 34 Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::3 ≈ Type Assumption 27 Failed to solve A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U+3) ≺ Type Substitution A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U+3) ≺ ?M::3 Propagate type, ?M::0 : ?M::3 Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::0 ≈ (Type U+2) Assumption 35 Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::3 ≈ Type Assumption 27 Failed to solve A : (Type U), A' : (Type U), H : A == A' ⊢ (?M::5 ≈ (Type U)) ⊕ (?M::5 ≈ (Type U+1)) Destruct/Decompose A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U) ≺ ?M::5 Propagate type, ?M::2 : ?M::5 Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ A' ≈ ?M::2 Destruct/Decompose A : (Type U), A' : (Type U), H : A == A' ⊢ A == A' ≺ ?M::1 == ?M::2 (line: 1: pos: 44) Type of argument 4 must be convertible to the expected type in the application of Symm::explicit with arguments: ?M::0 ?M::1 ?M::2 H Failed to solve A : (Type U), A' : (Type U), H : A == A' ⊢ (?M::0 ≈ (Type U)) ⊕ (?M::0 ≈ (Type U+1)) Destruct/Decompose A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U) ≺ ?M::0 Substitution A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::5 ≺ ?M::0 (line: 1: pos: 44) Type of argument 3 must be convertible to the expected type in the application of Symm::explicit with arguments: ?M::0 ?M::1 ?M::2 H Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::5 ≈ (Type U) Assumption 37 Failed to solve A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U+1) ≺ Bool Substitution A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U+1) ≺ ?M::3 Propagate type, ?M::0 : ?M::3 Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::0 ≈ (Type U) Assumption 39 Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::3 ≈ Bool Assumption 36 Failed to solve A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U+2) ≺ Bool Substitution A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U+2) ≺ ?M::3 Propagate type, ?M::0 : ?M::3 Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::0 ≈ (Type U+1) Assumption 40 Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::3 ≈ Bool Assumption 36 Failed to solve A : (Type U), A' : (Type U), H : A == A' ⊢ (?M::0 ≈ (Type U+1)) ⊕ (?M::0 ≈ (Type U+2)) Destruct/Decompose A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U+1) ≺ ?M::0 Substitution A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::5 ≺ ?M::0 (line: 1: pos: 44) Type of argument 3 must be convertible to the expected type in the application of Symm::explicit with arguments: ?M::0 ?M::1 ?M::2 H Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::5 ≈ (Type U+1) Assumption 41 Failed to solve A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U+2) ≺ Bool Substitution A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U+2) ≺ ?M::3 Propagate type, ?M::0 : ?M::3 Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::0 ≈ (Type U+1) Assumption 43 Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::3 ≈ Bool Assumption 36 Failed to solve A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U+3) ≺ Bool Substitution A : (Type U), A' : (Type U), H : A == A' ⊢ (Type U+3) ≺ ?M::3 Propagate type, ?M::0 : ?M::3 Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::0 ≈ (Type U+2) Assumption 44 Assignment A : (Type U), A' : (Type U), H : A == A' ⊢ ?M::3 ≈ Bool Assumption 36