import logic open tactic inductive nat : Type := zero : nat, succ : nat → nat namespace nat definition add (a b : nat) : nat := nat.rec a (λ n r, succ r) b infixl `+`:65 := add definition one := succ zero -- Define coercion from num -> nat -- By default the parser converts numerals into a binary representation num definition pos_num_to_nat (n : pos_num) : nat := pos_num.rec one (λ n r, r + r) (λ n r, r + r + one) n definition num_to_nat (n : num) : nat := num.rec zero (λ n, pos_num_to_nat n) n coercion num_to_nat -- Now we can write 2 + 3, the coercion will be applied check 2 + 3 -- Define an assump as an alias for the eassumption tactic definition assump : tactic := eassumption theorem T1 {p : nat → Prop} {a : nat } (H : p (a+2)) : ∃ x, p (succ x) := by apply exists_intro; assump definition is_zero (n : nat) := nat.rec true (λ n r, false) n theorem T2 : ∃ a, (is_zero a) = true := by apply exists_intro; apply eq.refl end nat