-- Copyright (c) 2014 Floris van Doorn. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Floris van Doorn import .basic import logic.cast open function open category eq eq.ops heq inductive functor (C D : Category) : Type := mk : Π (obF : C → D) (homF : Π(a b : C), hom a b → hom (obF a) (obF b)), (Π (a : C), homF a a (ID a) = ID (obF a)) → (Π (a b c : C) {g : hom b c} {f : hom a b}, homF a c (g ∘ f) = homF b c g ∘ homF a b f) → functor C D infixl `⇒`:25 := functor namespace functor variables {C D E : Category} definition object [coercion] (F : functor C D) : C → D := rec (λ obF homF Hid Hcomp, obF) F definition morphism [coercion] (F : functor C D) : Π⦃a b : C⦄, hom a b → hom (F a) (F b) := rec (λ obF homF Hid Hcomp, homF) F theorem respect_id (F : functor C D) : Π (a : C), F (ID a) = id := rec (λ obF homF Hid Hcomp, Hid) F theorem respect_comp (F : functor C D) : Π ⦃a b c : C⦄ (g : hom b c) (f : hom a b), F (g ∘ f) = F g ∘ F f := rec (λ obF homF Hid Hcomp, Hcomp) F protected definition compose (G : functor D E) (F : functor C D) : functor C E := functor.mk (λx, G (F x)) (λ a b f, G (F f)) (λ a, calc G (F (ID a)) = G id : {respect_id F a} --not giving the braces explicitly makes the elaborator compute a couple more seconds ... = id : respect_id G (F a)) (λ a b c g f, calc G (F (g ∘ f)) = G (F g ∘ F f) : respect_comp F g f ... = G (F g) ∘ G (F f) : respect_comp G (F g) (F f)) infixr `∘f`:60 := compose protected theorem assoc {A B C D : Category} (H : functor C D) (G : functor B C) (F : functor A B) : H ∘f (G ∘f F) = (H ∘f G) ∘f F := rfl protected definition id {C : Category} : functor C C := mk (λa, a) (λ a b f, f) (λ a, rfl) (λ a b c f g, rfl) protected definition ID (C : Category) : functor C C := id protected theorem id_left (F : functor C D) : id ∘f F = F := functor.rec (λ obF homF idF compF, dcongr_arg4 mk rfl rfl !proof_irrel !proof_irrel) F protected theorem id_right (F : functor C D) : F ∘f id = F := functor.rec (λ obF homF idF compF, dcongr_arg4 mk rfl rfl !proof_irrel !proof_irrel) F end functor namespace category open functor definition category_of_categories [reducible] : category Category := mk (λ a b, functor a b) (λ a b c g f, functor.compose g f) (λ a, functor.id) (λ a b c d h g f, !functor.assoc) (λ a b f, !functor.id_left) (λ a b f, !functor.id_right) definition Category_of_categories [reducible] := Mk category_of_categories namespace ops notation `Cat`:max := Category_of_categories instance [persistent] category_of_categories end ops end category namespace functor -- open category.ops -- universes l m variables {C D : Category} -- check hom C D -- variables (F : C ⟶ D) (G : D ⇒ C) -- check G ∘ F -- check F ∘f G -- variables (a b : C) (f : a ⟶ b) -- check F a -- check F b -- check F f -- check G (F f) -- print "---" -- -- check (G ∘ F) f --error -- check (λ(x : functor C C), x) (G ∘ F) f -- check (G ∘f F) f -- print "---" -- -- check (G ∘ F) a --error -- check (G ∘f F) a -- print "---" -- -- check λ(H : hom C D) (x : C), H x --error -- check λ(H : @hom _ Cat C D) (x : C), H x -- check λ(H : C ⇒ D) (x : C), H x -- print "---" -- -- variables {obF obG : C → D} (Hob : ∀x, obF x = obG x) (homF : Π(a b : C) (f : a ⟶ b), obF a ⟶ obF b) (homG : Π(a b : C) (f : a ⟶ b), obG a ⟶ obG b) -- -- check eq.rec_on (funext Hob) homF = homG theorem mk_heq {obF obG : C → D} {homF homG idF idG compF compG} (Hob : ∀x, obF x = obG x) (Hmor : ∀(a b : C) (f : a ⟶ b), homF a b f == homG a b f) : mk obF homF idF compF = mk obG homG idG compG := hddcongr_arg4 mk (funext Hob) (hfunext (λ a, hfunext (λ b, hfunext (λ f, !Hmor)))) !proof_irrel !proof_irrel protected theorem hequal {F G : C ⇒ D} : Π (Hob : ∀x, F x = G x) (Hmor : ∀a b (f : a ⟶ b), F f == G f), F = G := functor.rec (λ obF homF idF compF, functor.rec (λ obG homG idG compG Hob Hmor, mk_heq Hob Hmor) G) F -- theorem mk_eq {obF obG : C → D} {homF homG idF idG compF compG} (Hob : ∀x, obF x = obG x) -- (Hmor : ∀(a b : C) (f : a ⟶ b), cast (congr_arg (λ x, x a ⟶ x b) (funext Hob)) (homF a b f) -- = homG a b f) -- : mk obF homF idF compF = mk obG homG idG compG := -- dcongr_arg4 mk -- (funext Hob) -- (funext (λ a, funext (λ b, funext (λ f, sorry ⬝ Hmor a b f)))) -- -- to fill this sorry use (a generalization of) cast_pull -- !proof_irrel -- !proof_irrel -- protected theorem equal {F G : C ⇒ D} : Π (Hob : ∀x, F x = G x) -- (Hmor : ∀a b (f : a ⟶ b), cast (congr_arg (λ x, x a ⟶ x b) (funext Hob)) (F f) = G f), F = G := -- functor.rec -- (λ obF homF idF compF, -- functor.rec -- (λ obG homG idG compG Hob Hmor, mk_eq Hob Hmor) -- G) -- F end functor