-- Copyright (c) 2014 Floris van Doorn. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Floris van Doorn, Jakob von Raumer import .functor open eq precategory functor is_trunc equiv sigma.ops sigma is_equiv function pi inductive nat_trans {C D : Precategory} (F G : C ⇒ D) : Type := mk : Π (η : Π (a : C), hom (F a) (G a)) (nat : Π {a b : C} (f : hom a b), G f ∘ η a = η b ∘ F f), nat_trans F G infixl `⟹`:25 := nat_trans -- \==> namespace nat_trans variables {C D : Precategory} {F G H I : functor C D} definition natural_map [coercion] (η : F ⟹ G) : Π (a : C), F a ⟶ G a := nat_trans.rec (λ x y, x) η theorem naturality (η : F ⟹ G) : Π⦃a b : C⦄ (f : a ⟶ b), G f ∘ η a = η b ∘ F f := nat_trans.rec (λ x y, y) η protected definition compose (η : G ⟹ H) (θ : F ⟹ G) : F ⟹ H := nat_trans.mk (λ a, η a ∘ θ a) (λ a b f, calc H f ∘ (η a ∘ θ a) = (H f ∘ η a) ∘ θ a : assoc ... = (η b ∘ G f) ∘ θ a : naturality η f ... = η b ∘ (G f ∘ θ a) : assoc ... = η b ∘ (θ b ∘ F f) : naturality θ f ... = (η b ∘ θ b) ∘ F f : assoc) infixr `∘n`:60 := compose protected theorem congr {C : Precategory} {D : Precategory} (F G : C ⇒ D) (η₁ η₂ : Π (a : C), hom (F a) (G a)) (nat₁ : Π (a b : C) (f : hom a b), G f ∘ η₁ a = η₁ b ∘ F f) (nat₂ : Π (a b : C) (f : hom a b), G f ∘ η₂ a = η₂ b ∘ F f) (p₁ : η₁ = η₂) (p₂ : p₁ ▹ nat₁ = nat₂) : @nat_trans.mk C D F G η₁ nat₁ = @nat_trans.mk C D F G η₂ nat₂ := begin apply (apD011 (@nat_trans.mk C D F G) p₁ p₂), end set_option apply.class_instance false -- disable class instance resolution in the apply tactic protected definition assoc (η₃ : H ⟹ I) (η₂ : G ⟹ H) (η₁ : F ⟹ G) : η₃ ∘n (η₂ ∘n η₁) = (η₃ ∘n η₂) ∘n η₁ := begin cases η₃, cases η₂, cases η₁, fapply nat_trans.congr, {apply funext.eq_of_homotopy, intro a, apply assoc}, {repeat (apply funext.eq_of_homotopy; intros), apply (@is_hset.elim), apply !homH}, end protected definition id {C D : Precategory} {F : functor C D} : nat_trans F F := mk (λa, id) (λa b f, !id_right ⬝ (!id_left⁻¹)) protected definition ID {C D : Precategory} (F : functor C D) : nat_trans F F := id protected definition id_left (η : F ⟹ G) : id ∘n η = η := begin cases η, fapply (nat_trans.congr F G), {apply funext.eq_of_homotopy, intro a, apply id_left}, {repeat (apply funext.eq_of_homotopy; intros), apply (@is_hset.elim), apply !homH}, end protected definition id_right (η : F ⟹ G) : η ∘n id = η := begin cases η, fapply (nat_trans.congr F G), {apply funext.eq_of_homotopy, intros, apply id_right}, {repeat (apply funext.eq_of_homotopy; intros), apply (@is_hset.elim), apply !homH}, end --set_option pp.implicit true protected definition sigma_char (F G : C ⇒ D) : (Σ (η : Π (a : C), hom (F a) (G a)), Π (a b : C) (f : hom a b), G f ∘ η a = η b ∘ F f) ≃ (F ⟹ G) := begin fapply equiv.mk, intro S, apply nat_trans.mk, exact (S.2), fapply adjointify, intro H, fapply sigma.mk, intro a, exact (H a), intros (a, b, f), exact (naturality H f), intro H, apply (nat_trans.rec_on H), intros (eta, nat), unfold function.id, fapply nat_trans.congr, apply idp, repeat ( apply funext.eq_of_homotopy ; intros ), apply (@is_hset.elim), apply !homH, intro S, fapply sigma_eq, apply funext.eq_of_homotopy, intro a, apply idp, repeat ( apply funext.eq_of_homotopy ; intros ), apply (@is_hset.elim), apply !homH, end protected definition to_hset : is_hset (F ⟹ G) := begin apply is_trunc_is_equiv_closed, apply (equiv.to_is_equiv !sigma_char), apply is_trunc_sigma, apply is_trunc_pi, intro a, exact (@homH (objects D) _ (F a) (G a)), intro η, apply is_trunc_pi, intro a, apply is_trunc_pi, intro b, apply is_trunc_pi, intro f, apply is_trunc_eq, apply is_trunc_succ, exact (@homH (objects D) _ (F a) (G b)), end end nat_trans