-- Copyright (c) 2014 Jakob von Raumer. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Jakob von Raumer -- Ported from Coq HoTT prelude import ..equiv ..datatypes ..types.prod import .funext_varieties .ua .funext open eq function prod is_trunc sigma equiv is_equiv unit context universe variables l private theorem ua_isequiv_postcompose {A B : Type.{l}} {C : Type} {w : A → B} [H0 : is_equiv w] : is_equiv (@compose C A B w) := let w' := equiv.mk w H0 in let eqinv : A = B := ((@is_equiv.inv _ _ _ (univalence A B)) w') in let eq' := equiv_of_eq eqinv in is_equiv.adjointify (@compose C A B w) (@compose C B A (is_equiv.inv w)) (λ (x : C → B), have eqretr : eq' = w', from (@retr _ _ (@equiv_of_eq A B) (univalence A B) w'), have invs_eq : (to_fun eq')⁻¹ = (to_fun w')⁻¹, from inv_eq eq' w' eqretr, have eqfin : (to_fun eq') ∘ ((to_fun eq')⁻¹ ∘ x) = x, from (λ p, (@eq.rec_on Type.{l} A (λ B' p', Π (x' : C → B'), (to_fun (equiv_of_eq p')) ∘ ((to_fun (equiv_of_eq p'))⁻¹ ∘ x') = x') B p (λ x', idp)) ) eqinv x, have eqfin' : (to_fun w') ∘ ((to_fun eq')⁻¹ ∘ x) = x, from eqretr ▹ eqfin, have eqfin'' : (to_fun w') ∘ ((to_fun w')⁻¹ ∘ x) = x, from invs_eq ▹ eqfin', eqfin'' ) (λ (x : C → A), have eqretr : eq' = w', from (@retr _ _ (@equiv_of_eq A B) (univalence A B) w'), have invs_eq : (to_fun eq')⁻¹ = (to_fun w')⁻¹, from inv_eq eq' w' eqretr, have eqfin : (to_fun eq')⁻¹ ∘ ((to_fun eq') ∘ x) = x, from (λ p, eq.rec_on p idp) eqinv, have eqfin' : (to_fun eq')⁻¹ ∘ ((to_fun w') ∘ x) = x, from eqretr ▹ eqfin, have eqfin'' : (to_fun w')⁻¹ ∘ ((to_fun w') ∘ x) = x, from invs_eq ▹ eqfin', eqfin'' ) -- We are ready to prove functional extensionality, -- starting with the naive non-dependent version. private definition diagonal [reducible] (B : Type) : Type := Σ xy : B × B, pr₁ xy = pr₂ xy private definition isequiv_src_compose {A B : Type} : @is_equiv (A → diagonal B) (A → B) (compose (pr₁ ∘ pr1)) := @ua_isequiv_postcompose _ _ _ (pr₁ ∘ pr1) (is_equiv.adjointify (pr₁ ∘ pr1) (λ x, sigma.mk (x , x) idp) (λx, idp) (λ x, sigma.rec_on x (λ xy, prod.rec_on xy (λ b c p, eq.rec_on p idp)))) private definition isequiv_tgt_compose {A B : Type} : @is_equiv (A → diagonal B) (A → B) (compose (pr₂ ∘ pr1)) := @ua_isequiv_postcompose _ _ _ (pr2 ∘ pr1) (is_equiv.adjointify (pr2 ∘ pr1) (λ x, sigma.mk (x , x) idp) (λx, idp) (λ x, sigma.rec_on x (λ xy, prod.rec_on xy (λ b c p, eq.rec_on p idp)))) set_option class.conservative false theorem nondep_funext_from_ua {A : Type} {B : Type} : Π {f g : A → B}, f ∼ g → f = g := (λ (f g : A → B) (p : f ∼ g), let d := λ (x : A), sigma.mk (f x , f x) idp in let e := λ (x : A), sigma.mk (f x , g x) (p x) in let precomp1 := compose (pr₁ ∘ pr1) in have equiv1 [visible] : is_equiv precomp1, from @isequiv_src_compose A B, have equiv2 [visible] : Π x y, is_equiv (ap precomp1), from is_equiv.is_equiv_ap precomp1, have H' : Π (x y : A → diagonal B), pr₁ ∘ pr1 ∘ x = pr₁ ∘ pr1 ∘ y → x = y, from (λ x y, is_equiv.inv (ap precomp1)), have eq2 : pr₁ ∘ pr1 ∘ d = pr₁ ∘ pr1 ∘ e, from idp, have eq0 : d = e, from H' d e eq2, have eq1 : (pr₂ ∘ pr1) ∘ d = (pr₂ ∘ pr1) ∘ e, from ap _ eq0, eq1 ) end -- Now we use this to prove weak funext, which as we know -- implies (with dependent eta) also the strong dependent funext. theorem weak_funext_of_ua : weak_funext := (λ (A : Type) (P : A → Type) allcontr, let U := (λ (x : A), unit) in have pequiv : Π (x : A), P x ≃ U x, from (λ x, @equiv_unit_of_is_contr (P x) (allcontr x)), have psim : Π (x : A), P x = U x, from (λ x, @is_equiv.inv _ _ equiv_of_eq (univalence _ _) (pequiv x)), have p : P = U, from @nondep_funext_from_ua A Type P U psim, have tU' : is_contr (A → unit), from is_contr.mk (λ x, ⋆) (λ f, @nondep_funext_from_ua A unit (λ x, ⋆) f (λ x, unit.rec_on (f x) idp)), have tU : is_contr (Π x, U x), from tU', have tlast : is_contr (Πx, P x), from eq.transport _ (p⁻¹) tU, tlast ) -- In the following we will proof function extensionality using the univalence axiom definition funext_of_ua [instance] : funext := funext_of_weak_funext (@weak_funext_of_ua)