/- Copyright (c) 2015 Robert Y. Lewis. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Robert Y. Lewis The real numbers, constructed as equivalence classes of Cauchy sequences of rationals. This construction follows Bishop and Bridges (1985). At this point, we no longer proceed constructively: this file makes heavy use of decidability and excluded middle. -/ import data.real.basic data.real.order data.rat data.nat logic.axioms.classical open -[coercions] rat open -[coercions] nat local notation 0 := rat.of_num 0 local notation 1 := rat.of_num 1 open eq.ops local notation 2 := pnat.pos (nat.of_num 2) dec_trivial namespace s ----------------------------- -- helper lemmas theorem abs_sub_square (a b : ℚ) : abs (a - b) * abs (a - b) = a * a + b * b - (1 + 1) * a * b := sorry --begin rewrite [abs_mul_self, *rat.left_distrib, *rat.right_distrib, *one_mul] end theorem neg_add_rewrite {a b : ℚ} : a + -b = -(b + -a) := sorry theorem abs_abs_sub_abs_le_abs_sub (a b : ℚ) : abs (abs a - abs b) ≤ abs (a - b) := begin apply rat.nonneg_le_nonneg_of_squares_le, repeat apply abs_nonneg, rewrite [*(abs_sub_square _ _), *abs_abs, *abs_mul_self], apply sub_le_sub_left, rewrite *rat.mul.assoc, apply rat.mul_le_mul_of_nonneg_left, rewrite -abs_mul, apply le_abs_self, apply trivial end theorem abs_one_div (q : ℚ) : abs (1 / q) = 1 / abs q := sorry theorem div_le_pnat (q : ℚ) (n : ℕ+) (H : q ≥ n⁻¹) : 1 / q ≤ pnat.to_rat n := sorry theorem pnat_cancel' (n m : ℕ+) : (n * n * m)⁻¹ * (pnat.to_rat n * pnat.to_rat n) = m⁻¹ := sorry -- does this not exist already?? theorem forall_of_not_exists {A : Type} {P : A → Prop} (H : ¬ ∃ a : A, P a) : ∀ a : A, ¬ P a := take a, assume Ha, H (exists.intro a Ha) theorem and_of_not_or {a b : Prop} (H : ¬ (a ∨ b)) : ¬ a ∧ ¬ b := and.intro (assume H', H (or.inl H')) (assume H', H (or.inr H')) theorem ne_zero_of_abs_ne_zero {a : ℚ} (H : abs a ≠ 0) : a ≠ 0 := assume Ha, H (Ha⁻¹ ▸ abs_zero) ----------------------------- -- Facts about absolute values of sequences, to define inverse definition s_abs (s : seq) : seq := λ n, abs (s n) theorem abs_reg_of_reg {s : seq} (Hs : regular s) : regular (s_abs s) := begin rewrite ↑regular at *, intros, apply rat.le.trans, apply abs_abs_sub_abs_le_abs_sub, apply Hs end theorem abs_pos_of_nonzero {s : seq} (Hs : regular s) (Hnz : sep s zero) : ∃ N : ℕ+, ∀ m : ℕ+, m ≥ N → abs (s m) ≥ N⁻¹ := begin rewrite [↑sep at Hnz, ↑s_lt at Hnz], apply or.elim Hnz, intro Hnz1, have H' : pos (sneg s), begin apply pos_of_pos_equiv, rotate 2, apply Hnz1, rotate 1, apply s_zero_add, repeat (assumption | apply reg_add_reg | apply reg_neg_reg | apply zero_is_reg) end, let H'' := bdd_away_of_pos (reg_neg_reg Hs) H', apply exists.elim H'', intro N HN, existsi N, intro m Hm, apply rat.le.trans, apply HN m Hm, rewrite ↑sneg, apply neg_le_abs_self, intro Hnz2, let H' := pos_of_pos_equiv (reg_add_reg Hs (reg_neg_reg zero_is_reg)) (s_add_zero s Hs) Hnz2, let H'' := bdd_away_of_pos Hs H', apply exists.elim H'', intro N HN, existsi N, intro m Hm, apply rat.le.trans, apply HN m Hm, apply le_abs_self end theorem sep_zero_of_pos {s : seq} (Hs : regular s) (Hpos : pos s) : sep s zero := begin rewrite ↑sep, apply or.inr, rewrite ↑s_lt, apply pos_of_pos_equiv, rotate 2, apply Hpos, apply Hs, apply equiv.symm, apply s_sub_zero Hs end ------------------------ -- This section could be cleaned up. definition pb {s : seq} (Hs : regular s) (Hpos : pos s) := some (abs_pos_of_nonzero Hs (sep_zero_of_pos Hs Hpos)) definition ps {s : seq} (Hs : regular s) (Hsep : sep s zero) := some (abs_pos_of_nonzero Hs Hsep) theorem pb_spec {s : seq} (Hs : regular s) (Hpos : pos s) : ∀ m : ℕ+, m ≥ (pb Hs Hpos) → abs (s m) ≥ (pb Hs Hpos)⁻¹ := some_spec (abs_pos_of_nonzero Hs (sep_zero_of_pos Hs Hpos)) theorem ps_spec {s : seq} (Hs : regular s) (Hsep : sep s zero) : ∀ m : ℕ+, m ≥ (ps Hs Hsep) → abs (s m) ≥ (ps Hs Hsep)⁻¹ := some_spec (abs_pos_of_nonzero Hs Hsep) definition s_inv {s : seq} (Hs : regular s) (n : ℕ+) : ℚ := if H : sep s zero then (if n < (ps Hs H) then 1 / (s ((ps Hs H) * (ps Hs H) * (ps Hs H))) else 1 / (s ((ps Hs H) * (ps Hs H) * n))) else 0 theorem peq {s : seq} (Hsep : sep s zero) (Hpos : pos s) (Hs : regular s) : pb Hs Hpos = ps Hs Hsep := rfl theorem s_inv_of_sep_lt_p {s : seq} (Hs : regular s) (Hsep : sep s zero) {n : ℕ+} (Hn : n < (ps Hs Hsep)) : s_inv Hs n = 1 / s ((ps Hs Hsep) * (ps Hs Hsep) * (ps Hs Hsep)) := begin apply eq.trans, apply dif_pos Hsep, apply dif_pos Hn end theorem s_inv_of_sep_gt_p {s : seq} (Hs : regular s) (Hsep : sep s zero) {n : ℕ+} (Hn : n ≥ (ps Hs Hsep)) : s_inv Hs n = 1 / s ((ps Hs Hsep) * (ps Hs Hsep) * n) := begin apply eq.trans, apply dif_pos Hsep, apply dif_neg (pnat.not_lt_of_le Hn) end theorem s_inv_of_pos_lt_p {s : seq} (Hs : regular s) (Hpos : pos s) {n : ℕ+} (Hn : n < (pb Hs Hpos)) : s_inv Hs n = 1 / s ((pb Hs Hpos) * (pb Hs Hpos) * (pb Hs Hpos)) := s_inv_of_sep_lt_p Hs (sep_zero_of_pos Hs Hpos) Hn theorem s_inv_of_pos_gt_p {s : seq} (Hs : regular s) (Hpos : pos s) {n : ℕ+} (Hn : n ≥ (pb Hs Hpos)) : s_inv Hs n = 1 / s ((pb Hs Hpos) * (pb Hs Hpos) * n) := s_inv_of_sep_gt_p Hs (sep_zero_of_pos Hs Hpos) Hn theorem le_ps {s : seq} (Hs : regular s) (Hsep : sep s zero) (n : ℕ+) : abs (s_inv Hs n) ≤ (pnat.to_rat (ps Hs Hsep)) := if Hn : n < ps Hs Hsep then (begin rewrite [(s_inv_of_sep_lt_p Hs Hsep Hn), abs_one_div], apply div_le_pnat, apply ps_spec, apply pnat.mul_le_mul_left end) else (begin rewrite [(s_inv_of_sep_gt_p Hs Hsep (le_of_not_gt Hn)), abs_one_div], apply div_le_pnat, apply ps_spec, rewrite pnat_mul_assoc, apply pnat.mul_le_mul_right end) theorem s_inv_zero : s_inv zero_is_reg = zero := funext (λ n, dif_neg (!not_sep_self)) theorem s_inv_of_zero' {s : seq} (Hs : regular s) (Hz : ¬ sep s zero) (n : ℕ+) : s_inv Hs n = 0 := dif_neg Hz theorem s_inv_of_zero {s : seq} (Hs : regular s) (Hz : ¬ sep s zero) : s_inv Hs = zero := begin apply funext, intro n, apply s_inv_of_zero' Hs Hz n end theorem s_ne_zero_of_ge_p {s : seq} (Hs : regular s) (Hsep : sep s zero) {n : ℕ+} (Hn : n ≥ (ps Hs Hsep)) : s n ≠ 0 := begin let Hps := ps_spec Hs Hsep, apply ne_zero_of_abs_ne_zero, apply ne_of_gt, apply gt_of_ge_of_gt, apply Hps, apply Hn, apply inv_pos end theorem reg_inv_reg {s : seq} (Hs : regular s) (Hsep : sep s zero) : regular (s_inv Hs) := begin rewrite ↑regular, intros, have Hsp : s ((ps Hs Hsep) * (ps Hs Hsep) * (ps Hs Hsep)) ≠ 0, from s_ne_zero_of_ge_p Hs Hsep !pnat.mul_le_mul_left, have Hspn : s ((ps Hs Hsep) * (ps Hs Hsep) * n) ≠ 0, from s_ne_zero_of_ge_p Hs Hsep (show (ps Hs Hsep) * (ps Hs Hsep) * n ≥ ps Hs Hsep, by rewrite pnat_mul_assoc; apply pnat.mul_le_mul_right), have Hspm : s ((ps Hs Hsep) * (ps Hs Hsep) * m) ≠ 0, from s_ne_zero_of_ge_p Hs Hsep (show (ps Hs Hsep) * (ps Hs Hsep) * m ≥ ps Hs Hsep, by rewrite pnat_mul_assoc; apply pnat.mul_le_mul_right), apply @decidable.cases_on (m < (ps Hs Hsep)) _ _, intro Hmlt, apply @decidable.cases_on (n < (ps Hs Hsep)) _ _, intro Hnlt, rewrite [(s_inv_of_sep_lt_p Hs Hsep Hmlt), (s_inv_of_sep_lt_p Hs Hsep Hnlt)], rewrite [sub_self, abs_zero], apply add_invs_nonneg, intro Hnlt, rewrite [(s_inv_of_sep_lt_p Hs Hsep Hmlt), (s_inv_of_sep_gt_p Hs Hsep (pnat.le_of_not_lt Hnlt))], rewrite [(div_sub_div Hsp Hspn), div_eq_mul_one_div, *abs_mul, *mul_one, *one_mul], apply rat.le.trans, apply rat.mul_le_mul, apply Hs, xrewrite [-(mul_one 1), -(div_mul_div Hsp Hspn), abs_mul], apply rat.mul_le_mul, rewrite -(s_inv_of_sep_lt_p Hs Hsep Hmlt), apply le_ps Hs Hsep, rewrite -(s_inv_of_sep_gt_p Hs Hsep (pnat.le_of_not_lt Hnlt)), apply le_ps Hs Hsep, apply abs_nonneg, apply le_of_lt !rat_of_pnat_is_pos, apply abs_nonneg, apply add_invs_nonneg, rewrite [right_distrib, *pnat_cancel', rat.add.comm], apply rat.add_le_add_right, apply inv_ge_of_le, apply pnat.le_of_lt, apply Hmlt, intro Hmlt, apply @decidable.cases_on (n < (ps Hs Hsep)) _ _, intro Hnlt, rewrite [(s_inv_of_sep_lt_p Hs Hsep Hnlt), (s_inv_of_sep_gt_p Hs Hsep (pnat.le_of_not_lt Hmlt))], rewrite [(div_sub_div Hspm Hsp), div_eq_mul_one_div, *abs_mul, *mul_one, *one_mul], apply rat.le.trans, apply rat.mul_le_mul, apply Hs, xrewrite [-(mul_one 1), -(div_mul_div Hspm Hsp), abs_mul], apply rat.mul_le_mul, rewrite -(s_inv_of_sep_gt_p Hs Hsep (pnat.le_of_not_lt Hmlt)), apply le_ps Hs Hsep, rewrite -(s_inv_of_sep_lt_p Hs Hsep Hnlt), apply le_ps Hs Hsep, apply abs_nonneg, apply le_of_lt !rat_of_pnat_is_pos, apply abs_nonneg, apply add_invs_nonneg, rewrite [right_distrib, *pnat_cancel', rat.add.comm], apply rat.add_le_add_left, apply inv_ge_of_le, apply pnat.le_of_lt, apply Hnlt, intro Hnlt, rewrite [(s_inv_of_sep_gt_p Hs Hsep (pnat.le_of_not_lt Hnlt)), (s_inv_of_sep_gt_p Hs Hsep (pnat.le_of_not_lt Hmlt))], rewrite [(div_sub_div Hspm Hspn), div_eq_mul_one_div, abs_mul, *one_mul, *mul_one], apply rat.le.trans, apply rat.mul_le_mul, apply Hs, xrewrite [-(mul_one 1), -(div_mul_div Hspm Hspn), abs_mul], apply rat.mul_le_mul, rewrite -(s_inv_of_sep_gt_p Hs Hsep (pnat.le_of_not_lt Hmlt)), apply le_ps Hs Hsep, rewrite -(s_inv_of_sep_gt_p Hs Hsep (pnat.le_of_not_lt Hnlt)), apply le_ps Hs Hsep, apply abs_nonneg, apply le_of_lt !rat_of_pnat_is_pos, apply abs_nonneg, apply add_invs_nonneg, rewrite [right_distrib, *pnat_cancel', rat.add.comm], apply rat.le.refl end theorem s_inv_ne_zero {s : seq} (Hs : regular s) (Hsep : sep s zero) (n : ℕ+) : s_inv Hs n ≠ 0 := if H : n ≥ ps Hs Hsep then (begin rewrite (s_inv_of_sep_gt_p Hs Hsep H), apply one_div_ne_zero, apply s_ne_zero_of_ge_p, apply ple.trans, apply H, apply pnat.mul_le_mul_left end) else (begin rewrite (s_inv_of_sep_lt_p Hs Hsep (lt_of_not_ge H)), apply one_div_ne_zero, apply s_ne_zero_of_ge_p, apply pnat.mul_le_mul_left end) theorem mul_inv {s : seq} (Hs : regular s) (Hsep : sep s zero) : smul s (s_inv Hs) ≡ one := begin let Rsi := reg_inv_reg Hs Hsep, let Rssi := reg_mul_reg Hs Rsi, apply eq_of_bdd Rssi one_is_reg, intros, existsi max (ps Hs Hsep) j, intro n Hn, have Hnz : s_inv Hs ((K₂ s (s_inv Hs)) * 2 * n) ≠ 0, from s_inv_ne_zero Hs Hsep _, xrewrite [↑smul, ↑one, rat.mul.comm, -(mul_one_div_cancel Hnz), -rat.mul_sub_left_distrib, abs_mul], apply rat.le.trans, apply rat.mul_le_mul_of_nonneg_right, apply canon_2_bound_right s, apply Rsi, apply abs_nonneg, have Hp : (K₂ s (s_inv Hs)) * 2 * n ≥ ps Hs Hsep, begin apply ple.trans, apply max_left, rotate 1, apply ple.trans, apply Hn, apply pnat.mul_le_mul_left end, have Hnz' : s (((ps Hs Hsep) * (ps Hs Hsep)) * ((K₂ s (s_inv Hs)) * 2 * n)) ≠ 0, from s_ne_zero_of_ge_p Hs Hsep (show ps Hs Hsep ≤ ((ps Hs Hsep) * (ps Hs Hsep)) * ((K₂ s (s_inv Hs)) * 2 * n), by rewrite *pnat_mul_assoc; apply pnat.mul_le_mul_right), xrewrite [(s_inv_of_sep_gt_p Hs Hsep Hp), (div_div Hnz')], apply rat.le.trans, apply rat.mul_le_mul_of_nonneg_left, apply Hs, apply le_of_lt, apply rat_of_pnat_is_pos, xrewrite [rat.mul.left_distrib, pnat_mul_comm ((ps Hs Hsep) * (ps Hs Hsep)), *pnat_mul_assoc, *(@pnat_div_helper (K₂ s (s_inv Hs))), -*rat.mul.assoc, *pnat.inv_cancel, *one_mul, -(padd_halves j)], apply rat.add_le_add, apply inv_ge_of_le, apply pnat_mul_le_mul_left', apply ple.trans, rotate 1, apply Hn, rotate_right 1, apply max_right, apply inv_ge_of_le, apply pnat_mul_le_mul_left', apply ple.trans, apply max_right, rotate 1, apply ple.trans, apply Hn, apply pnat.mul_le_mul_right end theorem inv_mul {s : seq} (Hs : regular s) (Hsep : sep s zero) : smul (s_inv Hs) s ≡ one := begin apply equiv.trans, rotate 3, apply s_mul_comm, apply mul_inv, repeat (assumption | apply reg_mul_reg | apply reg_inv_reg | apply zero_is_reg) end theorem sep_of_equiv_sep {s t : seq} (Hs : regular s) (Ht : regular t) (Heq : s ≡ t) (Hsep : sep s zero) : sep t zero := begin apply or.elim Hsep, intro Hslt, apply or.inl, rewrite ↑s_lt at *, apply pos_of_pos_equiv, rotate 2, apply Hslt, rotate_right 1, apply add_well_defined, rotate 4, apply equiv.refl, apply neg_well_defined, apply Heq, intro Hslt, apply or.inr, rewrite ↑s_lt at *, apply pos_of_pos_equiv, rotate 2, apply Hslt, rotate_right 1, apply add_well_defined, rotate 5, apply equiv.refl, repeat (assumption | apply reg_neg_reg | apply reg_add_reg | apply zero_is_reg) end theorem inv_unique {s t : seq} (Hs : regular s) (Ht : regular t) (Hsep : sep s zero) (Heq : smul s t ≡ one) : s_inv Hs ≡ t := begin apply equiv.trans, rotate 3, apply equiv.symm, apply s_mul_one, rotate 1, apply equiv.trans, rotate 3, apply mul_well_defined, rotate 4, apply equiv.refl, apply equiv.symm, apply Heq, apply equiv.trans, rotate 3, apply equiv.symm, apply s_mul_assoc, rotate 3, apply equiv.trans, rotate 3, apply mul_well_defined, rotate 4, apply inv_mul, rotate 1, apply equiv.refl, apply s_one_mul, repeat (assumption | apply reg_inv_reg | apply reg_mul_reg | apply one_is_reg) end theorem inv_well_defined {s t : seq} (Hs : regular s) (Ht : regular t) (Heq : s ≡ t) : s_inv Hs ≡ s_inv Ht := if Hsep : sep s zero then (begin let Hsept := sep_of_equiv_sep Hs Ht Heq Hsep, have Hm : smul t (s_inv Hs) ≡ smul s (s_inv Hs), begin apply mul_well_defined, repeat (assumption | apply reg_inv_reg), apply equiv.symm s t Heq, apply equiv.refl end, apply equiv.symm, apply inv_unique, rotate 2, apply equiv.trans, rotate 3, apply Hm, apply mul_inv, repeat (assumption | apply reg_inv_reg | apply reg_mul_reg), apply one_is_reg end) else (have H : s_inv Hs = zero, from funext (λ n, dif_neg Hsep), have Hsept : ¬ sep t zero, from assume H', Hsep (sep_of_equiv_sep Ht Hs (equiv.symm _ _ Heq) H'), have H' : s_inv Ht = zero, from funext (λ n, dif_neg Hsept), H'⁻¹ ▸ (H⁻¹ ▸ equiv.refl zero)) theorem s_neg_neg {s : seq} : sneg (sneg s) ≡ s := begin rewrite [↑equiv, ↑sneg], intro n, rewrite [neg_neg, sub_self, abs_zero], apply add_invs_nonneg end theorem s_neg_sub {s t : seq} (Hs : regular s) (Ht : regular t) : sneg (sadd s (sneg t)) ≡ sadd t (sneg s) := begin apply equiv.trans, rotate 3, apply s_neg_add_eq_s_add_neg, apply equiv.trans, rotate 3, apply add_well_defined, rotate 4, apply equiv.refl, apply s_neg_neg, apply s_add_comm, repeat (assumption | apply reg_add_reg | apply reg_neg_reg) end theorem s_le_total {s t : seq} (Hs : regular s) (Ht : regular t) : s_le s t ∨ s_le t s := if H : s_le s t then or.inl H else or.inr begin rewrite [↑s_le at *], have H' : ∃ n : ℕ+, -n⁻¹ > sadd t (sneg s) n, begin apply by_contradiction, intro Hex, have Hex' : ∀ n : ℕ+, -n⁻¹ ≤ sadd t (sneg s) n, begin intro m, apply by_contradiction, intro Hm, let Hm' := rat.lt_of_not_ge Hm, let Hex'' := exists.intro m Hm', apply Hex Hex'' end, apply H Hex' end, eapply exists.elim H', intro m Hm, let Hm' := neg_lt_neg Hm, rewrite neg_neg at Hm', apply s_nonneg_of_pos, rotate 1, apply pos_of_pos_equiv, rotate 1, apply s_neg_sub, rotate 2, rewrite [↑pos, ↑sneg], existsi m, apply Hm', repeat (assumption | apply reg_add_reg | apply reg_neg_reg) end theorem s_le_of_not_lt {s t : seq} (Hle : ¬ s_lt s t) : s_le t s := begin rewrite [↑s_le, ↑nonneg, ↑s_lt at Hle, ↑pos at Hle], let Hle' := forall_of_not_exists Hle, intro n, let Hn := neg_le_neg (rat.le_of_not_gt (Hle' n)), rewrite [↑sadd, ↑sneg, neg_add_rewrite], apply Hn end theorem sep_of_nequiv {s t : seq} (Hs : regular s) (Ht : regular t) (Hneq : ¬ equiv s t) : sep s t := begin rewrite ↑sep, apply by_contradiction, intro Hnor, let Hand := and_of_not_or Hnor, let Hle1 := s_le_of_not_lt (and.left Hand), let Hle2 := s_le_of_not_lt (and.right Hand), apply Hneq (equiv_of_le_of_ge Hs Ht Hle2 Hle1) end theorem s_zero_inv_equiv_zero : s_inv zero_is_reg ≡ zero := by rewrite s_inv_zero; apply equiv.refl theorem lt_or_equiv_of_le {s t : seq} (Hs : regular s) (Ht : regular t) (Hle : s_le s t) : s_lt s t ∨ s ≡ t := if H : s ≡ t then or.inr H else or.inl (lt_of_le_and_sep Hs Ht (and.intro Hle (sep_of_nequiv Hs Ht H))) theorem s_le_of_equiv_le_left {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u) (Heq : s ≡ t) (Hle : s_le s u) : s_le t u := begin rewrite ↑s_le at *, apply nonneg_of_nonneg_equiv, rotate 2, apply add_well_defined, rotate 4, apply equiv.refl, apply neg_well_defined, apply Heq, repeat (assumption | apply reg_add_reg | apply reg_neg_reg) end theorem s_le_of_equiv_le_right {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u) (Heq : t ≡ u) (Hle : s_le s t) : s_le s u := begin rewrite ↑s_le at *, apply nonneg_of_nonneg_equiv, rotate 2, apply add_well_defined, rotate 4, apply Heq, apply equiv.refl, repeat (assumption | apply reg_add_reg | apply reg_neg_reg) end ----------------------------- definition r_inv (s : reg_seq) : reg_seq := reg_seq.mk (s_inv (reg_seq.is_reg s)) (if H : sep (reg_seq.sq s) zero then reg_inv_reg (reg_seq.is_reg s) H else have Hz : s_inv (reg_seq.is_reg s) = zero, from funext (λ n, dif_neg H), Hz⁻¹ ▸ zero_is_reg) theorem r_inv_zero : requiv (r_inv r_zero) r_zero := s_zero_inv_equiv_zero theorem r_inv_well_defined {s t : reg_seq} (H : requiv s t) : requiv (r_inv s) (r_inv t) := inv_well_defined (reg_seq.is_reg s) (reg_seq.is_reg t) H theorem r_le_total (s t : reg_seq) : r_le s t ∨ r_le t s := s_le_total (reg_seq.is_reg s) (reg_seq.is_reg t) theorem r_mul_inv (s : reg_seq) (Hsep : r_sep s r_zero) : requiv (s * (r_inv s)) r_one := mul_inv (reg_seq.is_reg s) Hsep theorem r_sep_of_nequiv (s t : reg_seq) (Hneq : ¬ requiv s t) : r_sep s t := sep_of_nequiv (reg_seq.is_reg s) (reg_seq.is_reg t) Hneq theorem r_lt_or_equiv_of_le (s t : reg_seq) (Hle : r_le s t) : r_lt s t ∨ requiv s t := lt_or_equiv_of_le (reg_seq.is_reg s) (reg_seq.is_reg t) Hle theorem r_le_of_equiv_le_left {s t u : reg_seq} (Heq : requiv s t) (Hle : r_le s u) : r_le t u := s_le_of_equiv_le_left (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) Heq Hle theorem r_le_of_equiv_le_right {s t u : reg_seq} (Heq : requiv t u) (Hle : r_le s t) : r_le s u := s_le_of_equiv_le_right (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) Heq Hle end s namespace real definition inv (x : ℝ) : ℝ := quot.lift_on x (λ a, quot.mk (s.r_inv a)) (λ a b H, quot.sound (s.r_inv_well_defined H)) postfix `⁻¹` := inv theorem le_total (x y : ℝ) : x ≤ y ∨ y ≤ x := quot.induction_on₂ x y (λ s t, s.r_le_total s t) theorem mul_inv' (x : ℝ) : x ≢ zero → x * x⁻¹ = one := quot.induction_on x (λ s H, quot.sound (s.r_mul_inv s H)) theorem inv_mul' (x : ℝ) : x ≢ zero → x⁻¹ * x = one := by rewrite real.mul_comm; apply mul_inv' theorem neq_of_sep {x y : ℝ} (H : x ≢ y) : ¬ x = y := assume Heq, !not_sep_self (Heq ▸ H) theorem sep_of_neq {x y : ℝ} : ¬ x = y → x ≢ y := quot.induction_on₂ x y (λ s t H, s.r_sep_of_nequiv s t (assume Heq, H (quot.sound Heq))) theorem sep_is_neq (x y : ℝ) : (x ≢ y) = (¬ x = y) := propext (iff.intro neq_of_sep sep_of_neq) theorem mul_inv (x : ℝ) : x ≠ zero → x * x⁻¹ = one := !sep_is_neq ▸ !mul_inv' theorem inv_mul (x : ℝ) : x ≠ zero → x⁻¹ * x = one := !sep_is_neq ▸ !inv_mul' theorem inv_zero : zero⁻¹ = zero := quot.sound (s.r_inv_zero) theorem lt_or_eq_of_le (x y : ℝ) : x ≤ y → x < y ∨ x = y := quot.induction_on₂ x y (λ s t H, or.elim (s.r_lt_or_equiv_of_le s t H) (assume H1, or.inl H1) (assume H2, or.inr (quot.sound H2))) theorem le_iff_lt_or_eq (x y : ℝ) : x ≤ y ↔ x < y ∨ x = y := iff.intro (lt_or_eq_of_le x y) (le_of_lt_or_eq x y) theorem dec_lt : decidable_rel lt := begin rewrite ↑decidable_rel, intros, apply prop_decidable end open [classes] algebra definition linear_ordered_field [instance] : algebra.discrete_linear_ordered_field ℝ := ⦃ algebra.discrete_linear_ordered_field, comm_ring, ordered_ring, le_total := le_total, mul_inv_cancel := mul_inv, inv_mul_cancel := inv_mul, zero_lt_one := zero_lt_one, inv_zero := inv_zero, le_iff_lt_or_eq := le_iff_lt_or_eq, decidable_lt := dec_lt ⦄ end real