/- Copyright (c) 2015 Robert Y. Lewis. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Robert Y. Lewis, Jeremy Avigad The square root function. -/ import .ivt open analysis real classical topology noncomputable theory private definition sqr_lb (x : ℝ) : ℝ := 0 private theorem sqr_lb_is_lb (x : ℝ) (H : x ≥ 0) : (sqr_lb x) * (sqr_lb x) ≤ x := by rewrite [↑sqr_lb, zero_mul]; assumption private definition sqr_ub (x : ℝ) : ℝ := x + 1 private theorem sqr_ub_is_ub (x : ℝ) (H : x ≥ 0) : (sqr_ub x) * (sqr_ub x) ≥ x := begin rewrite [↑sqr_ub, left_distrib, mul_one, right_distrib, one_mul, {x + 1}add.comm, -*add.assoc], apply le_add_of_nonneg_left, repeat apply add_nonneg, apply mul_nonneg, repeat assumption, apply zero_le_one end private theorem lb_le_ub (x : ℝ) (H : x ≥ 0) : sqr_lb x ≤ sqr_ub x := begin rewrite [↑sqr_lb, ↑sqr_ub], apply add_nonneg, assumption, apply zero_le_one end private lemma sqr_cts : continuous (λ x : ℝ, x * x) := continuous_mul_of_continuous id_continuous id_continuous definition sqrt (x : ℝ) : ℝ := if H : x ≥ 0 then some (intermediate_value_incr_weak sqr_cts (lb_le_ub x H) (sqr_lb_is_lb x H) (sqr_ub_is_ub x H)) else 0 private theorem sqrt_spec {x : ℝ} (H : x ≥ 0) : sqrt x * sqrt x = x ∧ sqrt x ≥ 0 := begin rewrite [↑sqrt, dif_pos H], note Hs := some_spec (intermediate_value_incr_weak sqr_cts (lb_le_ub x H) (sqr_lb_is_lb x H) (sqr_ub_is_ub x H)), cases Hs with Hs1 Hs2, cases Hs2 with Hs2a Hs2b, exact and.intro Hs2b Hs1 end theorem sqrt_mul_self {x : ℝ} (H : x ≥ 0) : sqrt x * sqrt x = x := and.left (sqrt_spec H) theorem sqrt_nonneg (x : ℝ) : sqrt x ≥ 0 := if H : x ≥ 0 then and.right (sqrt_spec H) else by rewrite [↑sqrt, dif_neg H]; exact le.refl 0 theorem sqrt_squared {x : ℝ} (H : x ≥ 0) : (sqrt x)^2 = x := by krewrite [pow_two, sqrt_mul_self H] theorem sqrt_zero : sqrt (0 : ℝ) = 0 := have sqrt 0 * sqrt 0 = 0, from sqrt_mul_self !le.refl, or.elim (eq_zero_or_eq_zero_of_mul_eq_zero this) (λ H, H) (λ H, H) theorem sqrt_squared_of_nonneg {x : ℝ} (H : x ≥ 0) : sqrt (x^2) = x := have sqrt (x^2)^2 = x^2, from sqrt_squared (squared_nonneg x), eq_of_squared_eq_squared_of_nonneg (sqrt_nonneg (x^2)) H this theorem sqrt_squared' (x : ℝ) : sqrt (x^2) = abs x := have x^2 = (abs x)^2, by krewrite [+pow_two, -abs_mul, abs_mul_self], using this, by rewrite [this, sqrt_squared_of_nonneg (abs_nonneg x)] theorem sqrt_mul {x y : ℝ} (Hx : x ≥ 0) (Hy : y ≥ 0) : sqrt (x * y) = sqrt x * sqrt y := have (sqrt (x * y))^2 = (sqrt x * sqrt y)^2, from calc (sqrt (x * y))^2 = x * y : by rewrite [sqrt_squared (mul_nonneg Hx Hy)] ... = (sqrt x)^2 * (sqrt y)^2 : by rewrite [sqrt_squared Hx, sqrt_squared Hy] ... = (sqrt x * sqrt y)^2 : by krewrite [*pow_two]; rewrite [*mul.assoc, mul.left_comm (sqrt y)], eq_of_squared_eq_squared_of_nonneg !sqrt_nonneg (mul_nonneg !sqrt_nonneg !sqrt_nonneg) this