/- Copyright (c) 2016 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn, Clive Newstead -/ import .LES_of_homotopy_groups .sphere .complex_hopf open eq is_trunc trunc_index pointed algebra trunc nat is_conn fiber pointed unit namespace is_trunc -- Lemma 8.3.1 theorem trivial_homotopy_group_of_is_trunc (A : Type*) {n k : ℕ} [is_trunc n A] (H : n < k) : is_contr (π[k] A) := begin apply is_trunc_trunc_of_is_trunc, apply is_contr_loop_of_is_trunc, apply @is_trunc_of_le A n _, apply trunc_index.le_of_succ_le_succ, rewrite [succ_sub_two_succ k], exact of_nat_le_of_nat H, end theorem trivial_ghomotopy_group_of_is_trunc (A : Type*) (n k : ℕ) [is_trunc n A] (H : n ≤ k) : is_contr (πg[k+1] A) := trivial_homotopy_group_of_is_trunc A (lt_succ_of_le H) -- Lemma 8.3.2 theorem trivial_homotopy_group_of_is_conn (A : Type*) {k n : ℕ} (H : k ≤ n) [is_conn n A] : is_contr (π[k] A) := begin have H3 : is_contr (ptrunc k A), from is_conn_of_le A (of_nat_le_of_nat H), have H4 : is_contr (Ω[k](ptrunc k A)), from !is_trunc_loop_of_is_trunc, apply is_trunc_equiv_closed_rev, { apply equiv_of_pequiv (homotopy_group_pequiv_loop_ptrunc k A)} end -- Corollary 8.3.3 section open sphere sphere.ops sphere_index theorem homotopy_group_sphere_le (n k : ℕ) (H : k < n) : is_contr (π[k] (S* n)) := begin cases n with n, { exfalso, apply not_lt_zero, exact H}, { have H2 : k ≤ n, from le_of_lt_succ H, apply @(trivial_homotopy_group_of_is_conn _ H2) } end end theorem is_contr_HG_fiber_of_is_connected {A B : Type*} (k n : ℕ) (f : A →* B) [H : is_conn_fun n f] (H2 : k ≤ n) : is_contr (π[k] (pfiber f)) := @(trivial_homotopy_group_of_is_conn (pfiber f) H2) (H pt) theorem homotopy_group_trunc_of_le (A : Type*) (n k : ℕ) (H : k ≤ n) : π[k] (ptrunc n A) ≃* π[k] A := begin refine !homotopy_group_pequiv_loop_ptrunc ⬝e* _, refine loopn_pequiv_loopn _ (ptrunc_ptrunc_pequiv_left _ _) ⬝e* _, exact of_nat_le_of_nat H, exact !homotopy_group_pequiv_loop_ptrunc⁻¹ᵉ*, end /- Corollaries of the LES of homotopy groups -/ local attribute comm_group.to_group [coercion] local attribute is_equiv_tinverse [instance] open prod chain_complex group fin equiv function is_equiv lift /- Because of the construction of the LES this proof only gives us this result when A and B live in the same universe (because Lean doesn't have universe cumulativity). However, below we also proof that it holds for A and B in arbitrary universes. -/ theorem is_equiv_π_of_is_connected'.{u} {A B : pType.{u}} {n k : ℕ} (f : A →* B) (H2 : k ≤ n) [H : is_conn_fun n f] : is_equiv (π→[k] f) := begin cases k with k, { /- k = 0 -/ change (is_equiv (trunc_functor 0 f)), apply is_equiv_trunc_functor_of_is_conn_fun, refine is_conn_fun_of_le f (zero_le_of_nat n)}, { /- k > 0 -/ have H2' : k ≤ n, from le.trans !self_le_succ H2, exact @is_equiv_of_trivial _ (LES_of_homotopy_groups f) _ (is_exact_LES_of_homotopy_groups f (k, 2)) (is_exact_LES_of_homotopy_groups f (succ k, 0)) (@is_contr_HG_fiber_of_is_connected A B k n f H H2') (@is_contr_HG_fiber_of_is_connected A B (succ k) n f H H2) (@pgroup_of_group _ (group_LES_of_homotopy_groups f k 0) idp) (@pgroup_of_group _ (group_LES_of_homotopy_groups f k 1) idp) (homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun f (k, 0)))}, end theorem is_equiv_π_of_is_connected.{u v} {A : pType.{u}} {B : pType.{v}} {n k : ℕ} (f : A →* B) (H2 : k ≤ n) [H : is_conn_fun n f] : is_equiv (π→[k] f) := begin have π→[k] pdown.{v u} ∘* π→[k] (plift_functor f) ∘* π→[k] pup.{u v} ~* π→[k] f, begin refine pwhisker_left _ !homotopy_group_functor_compose⁻¹* ⬝* _, refine !homotopy_group_functor_compose⁻¹* ⬝* _, apply homotopy_group_functor_phomotopy, apply plift_functor_phomotopy end, have π→[k] pdown.{v u} ∘ π→[k] (plift_functor f) ∘ π→[k] pup.{u v} ~ π→[k] f, from this, apply is_equiv.homotopy_closed, rotate 1, { exact this}, { do 2 apply is_equiv_compose, { apply is_equiv_homotopy_group_functor, apply to_is_equiv !equiv_lift}, { refine @(is_equiv_π_of_is_connected' _ H2) _, apply is_conn_fun_lift_functor}, { apply is_equiv_homotopy_group_functor, apply to_is_equiv !equiv_lift⁻¹ᵉ}} end definition π_equiv_π_of_is_connected {A B : Type*} {n k : ℕ} (f : A →* B) (H2 : k ≤ n) [H : is_conn_fun n f] : π[k] A ≃* π[k] B := pequiv_of_pmap (π→[k] f) (is_equiv_π_of_is_connected f H2) -- TODO: prove this for A and B in different universe levels theorem is_surjective_π_of_is_connected.{u} {A B : pType.{u}} (n : ℕ) (f : A →* B) [H : is_conn_fun n f] : is_surjective (π→[n + 1] f) := @is_surjective_of_trivial _ (LES_of_homotopy_groups f) _ (is_exact_LES_of_homotopy_groups f (n, 2)) (@is_contr_HG_fiber_of_is_connected A B n n f H !le.refl) /- Theorem 8.8.3: Whitehead's principle and its corollaries -/ definition whitehead_principle (n : ℕ₋₂) {A B : Type} [HA : is_trunc n A] [HB : is_trunc n B] (f : A → B) (H' : is_equiv (trunc_functor 0 f)) (H : Πa k, is_equiv (π→[k + 1] (pmap_of_map f a))) : is_equiv f := begin revert A B HA HB f H' H, induction n with n IH: intros, { apply is_equiv_of_is_contr}, have Πa, is_equiv (Ω→ (pmap_of_map f a)), begin intro a, apply IH, do 2 (esimp; exact _), { rexact H a 0}, intro p k, have is_equiv (π→[k + 1] (Ω→(pmap_of_map f a))), from is_equiv_homotopy_group_functor_ap1 (k+1) (pmap_of_map f a), have Π(b : A) (p : a = b), is_equiv (pmap.to_fun (π→[k + 1] (pmap_of_map (ap f) p))), begin intro b p, induction p, apply is_equiv.homotopy_closed, exact this, refine homotopy_group_functor_phomotopy _ _, apply ap1_pmap_of_map end, have is_equiv (homotopy_group_pequiv _ (pequiv_of_eq_pt (!idp_con⁻¹ : ap f p = Ω→ (pmap_of_map f a) p)) ∘ pmap.to_fun (π→[k + 1] (pmap_of_map (ap f) p))), begin apply is_equiv_compose, exact this a p, end, apply is_equiv.homotopy_closed, exact this, refine !homotopy_group_functor_compose⁻¹* ⬝* _, apply homotopy_group_functor_phomotopy, fapply phomotopy.mk, { esimp, intro q, refine !idp_con⁻¹}, { esimp, refine !idp_con⁻¹}, end, apply is_equiv_of_is_equiv_ap1_of_is_equiv_trunc end definition whitehead_principle_pointed (n : ℕ₋₂) {A B : Type*} [HA : is_trunc n A] [HB : is_trunc n B] [is_conn 0 A] (f : A →* B) (H : Πk, is_equiv (π→[k] f)) : is_equiv f := begin apply whitehead_principle n, rexact H 0, intro a k, revert a, apply is_conn.elim -1, have is_equiv (π→[k + 1] (pointed_eta_pequiv B ⬝e* (pequiv_of_eq_pt (respect_pt f))⁻¹ᵉ*) ∘* π→[k + 1] f ∘* π→[k + 1] (pointed_eta_pequiv A)⁻¹ᵉ*), begin apply is_equiv_compose (π→[k + 1] (pointed_eta_pequiv B ⬝e* (pequiv_of_eq_pt (respect_pt f))⁻¹ᵉ*)), apply is_equiv_compose (π→[k + 1] f), all_goals apply is_equiv_homotopy_group_functor, end, refine @(is_equiv.homotopy_closed _) _ this _, apply to_homotopy, refine pwhisker_left _ !homotopy_group_functor_compose⁻¹* ⬝* _, refine !homotopy_group_functor_compose⁻¹* ⬝* _, apply homotopy_group_functor_phomotopy, apply phomotopy_pmap_of_map end open pointed.ops definition is_contr_of_trivial_homotopy (n : ℕ₋₂) (A : Type) [is_trunc n A] [is_conn 0 A] (H : Πk a, is_contr (π[k] (pointed.MK A a))) : is_contr A := begin fapply is_trunc_is_equiv_closed_rev, { exact λa, ⋆}, apply whitehead_principle n, { apply is_equiv_trunc_functor_of_is_conn_fun, apply is_conn_fun_to_unit_of_is_conn}, intro a k, apply @is_equiv_of_is_contr, refine trivial_homotopy_group_of_is_trunc _ !zero_lt_succ, end definition is_contr_of_trivial_homotopy_nat (n : ℕ) (A : Type) [is_trunc n A] [is_conn 0 A] (H : Πk a, k ≤ n → is_contr (π[k] (pointed.MK A a))) : is_contr A := begin apply is_contr_of_trivial_homotopy n, intro k a, apply @lt_ge_by_cases _ _ n k, { intro H', exact trivial_homotopy_group_of_is_trunc _ H'}, { intro H', exact H k a H'} end definition is_contr_of_trivial_homotopy_pointed (n : ℕ₋₂) (A : Type*) [is_trunc n A] (H : Πk, is_contr (π[k] A)) : is_contr A := begin have is_conn 0 A, proof H 0 qed, fapply is_contr_of_trivial_homotopy n A, intro k, apply is_conn.elim -1, cases A with A a, exact H k end definition is_contr_of_trivial_homotopy_nat_pointed (n : ℕ) (A : Type*) [is_trunc n A] (H : Πk, k ≤ n → is_contr (π[k] A)) : is_contr A := begin have is_conn 0 A, proof H 0 !zero_le qed, fapply is_contr_of_trivial_homotopy_nat n A, intro k a H', revert a, apply is_conn.elim -1, cases A with A a, exact H k H' end definition is_conn_fun_of_equiv_on_homotopy_groups.{u} (n : ℕ) {A B : Type.{u}} (f : A → B) [is_equiv (trunc_functor 0 f)] (H1 : Πa k, k ≤ n → is_equiv (homotopy_group_functor k (pmap_of_map f a))) (H2 : Πa, is_surjective (homotopy_group_functor (succ n) (pmap_of_map f a))) : is_conn_fun n f := have H2' : Πa k, k ≤ n → is_surjective (homotopy_group_functor (succ k) (pmap_of_map f a)), begin intro a k H, cases H with n' H', { apply H2}, { apply is_surjective_of_is_equiv, apply H1, exact succ_le_succ H'} end, have H3 : Πa, is_contr (ptrunc n (pfiber (pmap_of_map f a))), begin intro a, apply is_contr_of_trivial_homotopy_nat_pointed n, { intro k H, apply is_trunc_equiv_closed_rev, exact homotopy_group_ptrunc_of_le H _, rexact @is_contr_of_is_embedding_of_is_surjective +3ℕ (LES_of_homotopy_groups (pmap_of_map f a)) (k, 0) (is_exact_LES_of_homotopy_groups _ _) proof @(is_embedding_of_is_equiv _) (H1 a k H) qed proof (H2' a k H) qed} end, show Πb, is_contr (trunc n (fiber f b)), begin intro b, note p := right_inv (trunc_functor 0 f) (tr b), revert p, induction (trunc_functor 0 f)⁻¹ (tr b), esimp, intro p, induction !tr_eq_tr_equiv p with q, rewrite -q, exact H3 a end end is_trunc open is_trunc function /- applications to infty-connected types and maps -/ namespace is_conn definition is_conn_fun_inf_of_equiv_on_homotopy_groups.{u} {A B : Type.{u}} (f : A → B) [is_equiv (trunc_functor 0 f)] (H1 : Πa k, is_equiv (homotopy_group_functor k (pmap_of_map f a))) : is_conn_fun_inf f := begin apply is_conn_fun_inf.mk_nat, intro n, apply is_conn_fun_of_equiv_on_homotopy_groups, { intro a k H, exact H1 a k}, { intro a, apply is_surjective_of_is_equiv} end definition is_equiv_trunc_functor_of_is_conn_fun_inf.{u} (n : ℕ₋₂) {A B : Type.{u}} (f : A → B) [is_conn_fun_inf f] : is_equiv (trunc_functor n f) := _ definition is_equiv_homotopy_group_functor_of_is_conn_fun_inf.{u} {A B : pType.{u}} (f : A →* B) [is_conn_fun_inf f] (a : A) (k : ℕ) : is_equiv (homotopy_group_functor k f) := is_equiv_π_of_is_connected f (le.refl k) end is_conn