/* Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura */ #include #include "util/lbool.h" #include "util/interrupt.h" #include "util/sexpr/option_declarations.h" #include "kernel/instantiate.h" #include "kernel/metavar.h" #include "kernel/abstract.h" #include "kernel/for_each_fn.h" #include "library/normalize.h" #include "library/reducible.h" #include "library/class.h" #include "library/local_context.h" #include "library/generic_exception.h" #include "library/io_state_stream.h" #include "library/replace_visitor.h" #include "library/constants.h" #include "library/pp_options.h" #include "library/choice_iterator.h" #include "library/type_context.h" #include "library/class_instance_resolution.h" // The following include files are need by the old type class resolution procedure #include "util/lazy_list_fn.h" #include "library/unifier.h" #include "library/metavar_closure.h" namespace lean { [[ noreturn ]] void throw_class_exception(char const * msg, expr const & m) { throw_generic_exception(msg, m); } [[ noreturn ]] void throw_class_exception(expr const & m, pp_fn const & fn) { throw_generic_exception(m, fn); } static name * g_class_force_new = nullptr; static name * g_prefix = nullptr; bool get_class_force_new(options const & o) { return o.get_bool(*g_class_force_new, false); } struct cienv { typedef std::unique_ptr ti_ptr; ti_ptr m_ti_ptr; void reset(environment const & env, options const & o, list const & ctx) { m_ti_ptr.reset(new default_type_context(env, o, ctx)); } bool compatible_env(environment const & env) { environment const & curr_env = m_ti_ptr->env(); return env.is_descendant(curr_env) && curr_env.is_descendant(env); } void ensure_compatible(environment const & env, options const & o, list const & ctx) { if (!m_ti_ptr || !compatible_env(env) || !m_ti_ptr->compatible_local_instances(ctx)) reset(env, o, ctx); if (!m_ti_ptr->update_options(o)) m_ti_ptr->clear_cache(); } optional operator()(environment const & env, options const & o, pos_info_provider const * pip, list const & ctx, expr const & type, expr const & pos_ref) { ensure_compatible(env, o, ctx); type_context::scope_pos_info scope(*m_ti_ptr, pip, pos_ref); return m_ti_ptr->mk_class_instance(type); } }; MK_THREAD_LOCAL_GET_DEF(cienv, get_cienv); static optional mk_class_instance(environment const & env, options const & o, list const & ctx, expr const & e, pos_info_provider const * pip, expr const & pos_ref) { return get_cienv()(env, o, pip, ctx, e, pos_ref); } optional mk_class_instance(environment const & env, options const & o, list const & ctx, expr const & e, pos_info_provider const * pip) { return mk_class_instance(env, o, ctx, e, pip, e); } optional mk_class_instance(environment const & env, list const & ctx, expr const & e, pos_info_provider const * pip) { return mk_class_instance(env, options(), ctx, e, pip); } // Auxiliary class for generating a lazy-stream of instances. class class_multi_instance_iterator : public choice_iterator { io_state m_ios; default_type_context m_ti; type_context::scope_pos_info m_scope_pos_info; expr m_new_meta; justification m_new_j; optional m_first; public: class_multi_instance_iterator(environment const & env, io_state const & ios, list const & ctx, expr const & e, pos_info_provider const * pip, expr const & pos_ref, expr const & new_meta, justification const & new_j, bool is_strict): choice_iterator(!is_strict), m_ios(ios), m_ti(env, ios.get_options(), ctx, true), m_scope_pos_info(m_ti, pip, pos_ref), m_new_meta(new_meta), m_new_j(new_j) { m_first = m_ti.mk_class_instance(e); } virtual ~class_multi_instance_iterator() {} virtual optional next() { optional r; if (m_first) { r = m_first; m_first = none_expr(); } else { r = m_ti.next_class_instance(); } if (r) { constraint c = mk_eq_cnstr(m_new_meta, *r, m_new_j); return optional(constraints(c)); } else { return optional(); } } }; static constraint mk_class_instance_root_cnstr(environment const & env, io_state const & ios, local_context const & _ctx, expr const & m, bool is_strict, bool use_local_instances, pos_info_provider const * pip) { justification j = mk_failed_to_synthesize_jst(env, m); auto choice_fn = [=](expr const & meta, expr const & meta_type, substitution const & s, name_generator &&) { local_context ctx; if (use_local_instances) ctx = _ctx.instantiate(substitution(s)); cienv & cenv = get_cienv(); cenv.ensure_compatible(env, ios.get_options(), ctx.get_data()); auto cls_name = cenv.m_ti_ptr->is_class(meta_type); if (!cls_name) { // do nothing, since type is not a class. return lazy_list(constraints()); } bool multiple_insts = try_multiple_instances(env, *cls_name); pair mj = update_meta(meta, s); expr new_meta = mj.first; justification new_j = mj.second; if (multiple_insts) { return choose(std::shared_ptr(new class_multi_instance_iterator(env, ios, ctx.get_data(), meta_type, pip, meta, new_meta, new_j, is_strict))); } else { if (auto r = mk_class_instance(env, ios.get_options(), ctx.get_data(), meta_type, pip, meta)) { constraint c = mk_eq_cnstr(new_meta, *r, new_j); return lazy_list(constraints(c)); } else if (is_strict) { return lazy_list(); } else { return lazy_list(constraints()); } } }; bool owner = false; delay_factor factor; return mk_choice_cnstr(m, choice_fn, factor, owner, j); } /** \brief Create a metavariable, and attach choice constraint for generating solutions using class-instances */ pair mk_new_class_instance_elaborator( environment const & env, io_state const & ios, local_context const & ctx, name const & prefix, optional const & suffix, bool use_local_instances, bool is_strict, optional const & type, tag g, pos_info_provider const * pip) { name_generator ngen(prefix); expr m = ctx.mk_meta(ngen, suffix, type, g); constraint c = mk_class_instance_root_cnstr(env, ios, ctx, m, is_strict, use_local_instances, pip); return mk_pair(m, c); } optional mk_class_instance(environment const & env, io_state const & ios, local_context const & ctx, expr const & type, bool use_local_instances) { if (use_local_instances) return mk_class_instance(env, ios.get_options(), ctx.get_data(), type, nullptr); else return mk_class_instance(env, ios.get_options(), list(), type, nullptr); } optional mk_class_instance(environment const & env, local_context const & ctx, expr const & type) { return mk_class_instance(env, ctx.get_data(), type, nullptr); } optional mk_hset_instance(type_checker & tc, options const & o, list const & ctx, expr const & type) { level lvl = sort_level(tc.ensure_type(type).first); expr is_hset = tc.whnf(mk_app(mk_constant(get_is_trunc_is_hset_name(), {lvl}), type)).first; return mk_class_instance(tc.env(), o, ctx, is_hset); } optional mk_subsingleton_instance(environment const & env, options const & o, list const & ctx, expr const & type) { cienv & cenv = get_cienv(); cenv.ensure_compatible(env, o, ctx); return cenv.m_ti_ptr->mk_subsingleton_instance(type); } void initialize_class_instance_resolution() { g_prefix = new name(name::mk_internal_unique_name()); g_class_force_new = new name{"class", "force_new"}; register_bool_option(*g_class_force_new, false, "(class) force new type class resolution procedure to be used even in HoTT mode (THIS IS TEMPORARY OPTION)"); } void finalize_class_instance_resolution() { delete g_prefix; delete g_class_force_new; } /* The rest of this module implements the old more powerful and *expensive* type class resolution procedure. We still have it because the HoTT library contains type class instances that require full-higher order unification to be solved. Example: definition is_equiv_tr [instance] [constructor] {A : Type} (P : A → Type) {x y : A} (p : x = y) : (is_equiv (transport P p)) := ... */ static bool get_class_trace_instances(options const & o) { return o.get_bool(name("trace", "class_instances"), false); } /** \brief Context for handling class-instance metavariable choice constraint */ struct class_instance_context { io_state m_ios; name_generator m_ngen; type_checker_ptr m_tc; expr m_main_meta; bool m_use_local_instances; bool m_trace_instances; bool m_conservative; unsigned m_max_depth; bool m_trans_instances; char const * m_fname; optional m_pos; class_instance_context(environment const & env, io_state const & ios, name const & prefix, bool use_local_instances): m_ios(ios), m_ngen(prefix), m_use_local_instances(use_local_instances) { m_fname = nullptr; m_trace_instances = get_class_trace_instances(ios.get_options()); m_max_depth = get_class_instance_max_depth(ios.get_options()); m_conservative = true; // We removed the option class.conservative m_trans_instances = get_class_trans_instances(ios.get_options()); m_tc = mk_class_type_checker(env, m_ngen.mk_child(), m_conservative); options opts = m_ios.get_options(); opts = opts.update_if_undef(get_pp_purify_metavars_name(), false); opts = opts.update_if_undef(get_pp_implicit_name(), true); m_ios.set_options(opts); } environment const & env() const { return m_tc->env(); } io_state const & ios() const { return m_ios; } bool use_local_instances() const { return m_use_local_instances; } type_checker & tc() const { return *m_tc; } bool trace_instances() const { return m_trace_instances; } void set_main_meta(expr const & meta) { m_main_meta = meta; } expr const & get_main_meta() const { return m_main_meta; } void set_pos(char const * fname, optional const & pos) { m_fname = fname; m_pos = pos; } optional const & get_pos() const { return m_pos; } char const * get_file_name() const { return m_fname; } unsigned get_max_depth() const { return m_max_depth; } bool use_trans_instances() const { return m_trans_instances; } }; static pair mk_class_instance_elaborator(std::shared_ptr const & C, local_context const & ctx, optional const & type, tag g, unsigned depth, bool use_globals); /** \brief Choice function \c fn for synthesizing class instances. The function \c fn produces a stream of alternative solutions for ?m. In this case, \c fn will do the following: 1) if the elaborated type of ?m is a 'class' C, then the stream will start with a) all local instances of class C (if elaborator.local_instances == true) b) all global instances of class C */ struct class_instance_elaborator : public choice_iterator { std::shared_ptr m_C; local_context m_ctx; expr m_meta; // elaborated type of the metavariable expr m_meta_type; // local instances that should also be included in the // class-instance resolution. // This information is retrieved from the local context list m_local_instances; // global declaration names that are class instances. // This information is retrieved using #get_class_instances. list m_trans_instances; list m_instances; justification m_jst; unsigned m_depth; bool m_displayed_trace_header; class_instance_elaborator(std::shared_ptr const & C, local_context const & ctx, expr const & meta, expr const & meta_type, list const & local_insts, list const & trans_insts, list const & instances, justification const & j, unsigned depth): choice_iterator(), m_C(C), m_ctx(ctx), m_meta(meta), m_meta_type(meta_type), m_local_instances(local_insts), m_trans_instances(trans_insts), m_instances(instances), m_jst(j), m_depth(depth) { if (m_depth > m_C->get_max_depth()) { throw_class_exception("maximum class-instance resolution depth has been reached " "(the limit can be increased by setting option 'class.instance_max_depth') " "(the class-instance resolution trace can be visualized " "by setting option 'class.trace_instances')", C->get_main_meta()); } m_displayed_trace_header = false; } constraints mk_constraints(constraint const & c, buffer const & cs) { return cons(c, to_list(cs.begin(), cs.end())); } void trace(expr const & t, expr const & r) { if (!m_C->trace_instances()) return; auto out = diagnostic(m_C->env(), m_C->ios()); if (!m_displayed_trace_header && m_depth == 0) { if (auto fname = m_C->get_file_name()) { out << fname << ":"; } if (auto pos = m_C->get_pos()) { out << pos->first << ":" << pos->second << ":"; } out << " class-instance resolution trace" << endl; m_displayed_trace_header = true; } for (unsigned i = 0; i < m_depth; i++) out << " "; if (m_depth > 0) out << "[" << m_depth << "] "; out << m_meta << " : " << t << " := " << r << endl; } optional try_instance(expr const & inst, expr const & inst_type, bool use_globals) { type_checker & tc = m_C->tc(); name_generator & ngen = m_C->m_ngen; tag g = inst.get_tag(); try { flet scope(m_ctx, m_ctx); buffer locals; expr meta_type = m_meta_type; while (true) { meta_type = tc.whnf(meta_type).first; if (!is_pi(meta_type)) break; expr local = mk_local(ngen.next(), binding_name(meta_type), binding_domain(meta_type), binding_info(meta_type)); m_ctx.add_local(local); locals.push_back(local); meta_type = instantiate(binding_body(meta_type), local); } expr type = inst_type; expr r = inst; buffer cs; while (true) { type = tc.whnf(type).first; if (!is_pi(type)) break; expr arg; if (binding_info(type).is_inst_implicit()) { pair ac = mk_class_instance_elaborator(m_C, m_ctx, some_expr(binding_domain(type)), g, m_depth+1, use_globals); arg = ac.first; cs.push_back(ac.second); } else { arg = m_ctx.mk_meta(m_C->m_ngen, some_expr(binding_domain(type)), g); } r = mk_app(r, arg, g); type = instantiate(binding_body(type), arg); } r = Fun(locals, r); trace(meta_type, r); constraint c = mk_eq_cnstr(m_meta, r, m_jst); return optional(mk_constraints(c, cs)); } catch (exception &) { return optional(); } } optional try_instance(name const & inst, bool use_globals) { environment const & env = m_C->env(); if (auto decl = env.find(inst)) { name_generator & ngen = m_C->m_ngen; buffer ls_buffer; unsigned num_univ_ps = decl->get_num_univ_params(); for (unsigned i = 0; i < num_univ_ps; i++) ls_buffer.push_back(mk_meta_univ(ngen.next())); levels ls = to_list(ls_buffer.begin(), ls_buffer.end()); expr inst_cnst = copy_tag(m_meta, mk_constant(inst, ls)); expr inst_type = instantiate_type_univ_params(*decl, ls); return try_instance(inst_cnst, inst_type, use_globals); } else { return optional(); } } virtual optional next() { while (!empty(m_local_instances)) { expr inst = head(m_local_instances); m_local_instances = tail(m_local_instances); if (!is_local(inst)) continue; bool use_globals = true; if (auto r = try_instance(inst, mlocal_type(inst), use_globals)) return r; } while (!empty(m_trans_instances)) { bool use_globals = false; name inst = head(m_trans_instances); m_trans_instances = tail(m_trans_instances); if (auto cs = try_instance(inst, use_globals)) return cs; } while (!empty(m_instances)) { bool use_globals = true; name inst = head(m_instances); m_instances = tail(m_instances); if (auto cs = try_instance(inst, use_globals)) return cs; } return optional(); } }; // Remarks: // - we only use get_class_instances and get_class_derived_trans_instances when use_globals is true static constraint mk_class_instance_cnstr(std::shared_ptr const & C, local_context const & ctx, expr const & m, unsigned depth, bool use_globals) { environment const & env = C->env(); justification j = mk_failed_to_synthesize_jst(env, m); auto choice_fn = [=](expr const & meta, expr const & meta_type, substitution const &, name_generator const &) { if (auto cls_name_it = is_ext_class(C->tc(), meta_type)) { name cls_name = *cls_name_it; list const & ctx_lst = ctx.get_data(); list local_insts; if (C->use_local_instances()) local_insts = get_local_instances(C->tc(), ctx_lst, cls_name); list trans_insts, insts; if (use_globals) { if (depth == 0 && C->use_trans_instances()) trans_insts = get_class_derived_trans_instances(env, cls_name); insts = get_class_instances(env, cls_name); } if (empty(local_insts) && empty(insts)) return lazy_list(); // nothing to be done // we are always strict with placeholders associated with classes return choose(std::make_shared(C, ctx, meta, meta_type, local_insts, trans_insts, insts, j, depth)); } else { // do nothing, type is not a class... return lazy_list(constraints()); } }; bool owner = false; return mk_choice_cnstr(m, choice_fn, to_delay_factor(cnstr_group::Basic), owner, j); } static pair mk_class_instance_elaborator(std::shared_ptr const & C, local_context const & ctx, optional const & type, tag g, unsigned depth, bool use_globals) { expr m = ctx.mk_meta(C->m_ngen, type, g); constraint c = mk_class_instance_cnstr(C, ctx, m, depth, use_globals); return mk_pair(m, c); } static constraint mk_class_instance_root_cnstr(std::shared_ptr const & C, local_context const & _ctx, expr const & m, bool is_strict, unifier_config const & cfg, delay_factor const & factor) { environment const & env = C->env(); justification j = mk_failed_to_synthesize_jst(env, m); auto choice_fn = [=](expr const & meta, expr const & meta_type, substitution const & s, name_generator && ngen) { environment const & env = C->env(); auto cls_name_it = is_ext_class(C->tc(), meta_type); if (!cls_name_it) { // do nothing, since type is not a class. return lazy_list(constraints()); } local_context ctx = _ctx.instantiate(substitution(s)); pair mj = update_meta(meta, s); expr new_meta = mj.first; justification new_j = mj.second; unsigned depth = 0; bool use_globals = true; constraint c = mk_class_instance_cnstr(C, ctx, new_meta, depth, use_globals); unifier_config new_cfg(cfg); new_cfg.m_discard = false; new_cfg.m_use_exceptions = false; new_cfg.m_pattern = true; new_cfg.m_kind = C->m_conservative ? unifier_kind::VeryConservative : unifier_kind::Liberal; auto to_cnstrs_fn = [=](substitution const & subst, constraints const & cnstrs) -> constraints { substitution new_s = subst; // some constraints may have been postponed (example: universe level constraints) constraints postponed = map(cnstrs, [&](constraint const & c) { // we erase internal justifications return update_justification(c, mk_composite1(j, new_j)); }); metavar_closure cls(new_meta); cls.add(meta_type); constraints cs = cls.mk_constraints(new_s, new_j); return append(cs, postponed); }; auto no_solution_fn = [=]() { if (is_strict) return lazy_list(); else return lazy_list(constraints()); }; unify_result_seq seq1 = unify(env, 1, &c, std::move(ngen), substitution(), new_cfg); unify_result_seq seq2 = filter(seq1, [=](pair const & p) { substitution new_s = p.first; expr result = new_s.instantiate(new_meta); // We only keep complete solutions (modulo universe metavariables) return !has_expr_metavar_relaxed(result); }); if (try_multiple_instances(env, *cls_name_it)) { lazy_list seq3 = map2(seq2, [=](pair const & p) { return to_cnstrs_fn(p.first, p.second); }); if (is_strict) { return seq3; } else { // make sure it does not fail by appending empty set of constraints return append(seq3, lazy_list(constraints())); } } else { auto p = seq2.pull(); if (!p) return no_solution_fn(); else return lazy_list(to_cnstrs_fn(p->first.first, p->first.second)); } }; bool owner = false; return mk_choice_cnstr(m, choice_fn, factor, owner, j); } /** \brief Create a metavariable, and attach choice constraint for generating solutions using class-instances */ pair mk_old_class_instance_elaborator( environment const & env, io_state const & ios, local_context const & ctx, name const & prefix, optional const & suffix, bool use_local_instances, bool is_strict, optional const & type, tag g, unifier_config const & cfg, pos_info_provider const * pip) { auto C = std::make_shared(env, ios, prefix, use_local_instances); expr m = ctx.mk_meta(C->m_ngen, suffix, type, g); C->set_main_meta(m); if (pip) C->set_pos(pip->get_file_name(), pip->get_pos_info(m)); constraint c = mk_class_instance_root_cnstr(C, ctx, m, is_strict, cfg, delay_factor()); return mk_pair(m, c); } pair mk_class_instance_elaborator( environment const & env, io_state const & ios, local_context const & ctx, name const & prefix, optional const & suffix, bool use_local_instances, bool is_strict, optional const & type, tag g, pos_info_provider const * pip) { if (is_standard(env) || get_class_force_new(ios.get_options())) { return mk_new_class_instance_elaborator(env, ios, ctx, prefix, suffix, use_local_instances, is_strict, type, g, pip); } else { unifier_config cfg(ios.get_options(), true /* use exceptions */, true /* discard */); return mk_old_class_instance_elaborator(env, ios, ctx, prefix, suffix, use_local_instances, is_strict, type, g, cfg, pip); } } }