import Int. variable P : Int -> Int -> Bool setopaque exists false. theorem T1 (R1 : not (exists x y, P x y)) : forall x y, not (P x y) := forall::intro (fun a, forall::intro (fun b, forall::elim (not::not::elim (forall::elim (not::not::elim R1) a)) b)) axiom Ax : forall x, exists y, P x y theorem T2 : exists x y, P x y := refute (fun R : not (exists x y, P x y), let L1 : forall x y, not (P x y) := forall::intro (fun a, forall::intro (fun b, forall::elim (not::not::elim (forall::elim (not::not::elim R) a)) b)), L2 : exists y, P 0 y := forall::elim Ax 0 in exists::elim L2 (fun (w : Int) (H : P 0 w), absurd H (forall::elim (forall::elim L1 0) w))). theorem T3 (A : (Type U)) (P : A -> A -> Bool) (a : A) (H1 : forall x, exists y, P x y) : exists x y, P x y := refute (fun R : not (exists x y, P x y), let L1 : forall x y, not (P x y) := forall::intro (fun a, forall::intro (fun b, forall::elim (not::not::elim (forall::elim (not::not::elim R) a)) b)), L2 : exists y, P a y := forall::elim H1 a in exists::elim L2 (fun (w : A) (H : P a w), absurd H (forall::elim (forall::elim L1 a) w))).