variable N : Type variable h : N -> N -> N theorem congrH {a1 a2 b1 b2 : N} (H1 : a1 = b1) (H2 : a2 = b2) : (h a1 a2) = (h b1 b2) := congr (congr (refl h) H1) H2 -- Display the theorem showing implicit arguments setoption lean::pp::implicit true print environment 2 -- Display the theorem hiding implicit arguments setoption lean::pp::implicit false print environment 2 theorem Example1 (a b c d : N) (H: (a = b ∧ b = c) ∨ (a = d ∧ d = c)) : (h a b) = (h c b) := or::elim H (fun H1 : a = b ∧ b = c, congrH (trans (and::eliml H1) (and::elimr H1)) (refl b)) (fun H1 : a = d ∧ d = c, congrH (trans (and::eliml H1) (and::elimr H1)) (refl b)) -- print proof of the last theorem with all implicit arguments setoption lean::pp::implicit true print environment 1 -- Using placeholders to hide the type of H1 theorem Example2 (a b c d : N) (H: (a = b ∧ b = c) ∨ (a = d ∧ d = c)) : (h a b) = (h c b) := or::elim H (fun H1 : _, congrH (trans (and::eliml H1) (and::elimr H1)) (refl b)) (fun H1 : _, congrH (trans (and::eliml H1) (and::elimr H1)) (refl b)) setoption lean::pp::implicit true print environment 1 -- Same example but the first conjuct has unnecessary stuff theorem Example3 (a b c d e : N) (H: (a = b ∧ b = e ∧ b = c) ∨ (a = d ∧ d = c)) : (h a b) = (h c b) := or::elim H (fun H1 : _, congrH (trans (and::eliml H1) (and::elimr (and::elimr H1))) (refl b)) (fun H1 : _, congrH (trans (and::eliml H1) (and::elimr H1)) (refl b)) setoption lean::pp::implicit false print environment 1 theorem Example4 (a b c d e : N) (H: (a = b ∧ b = e ∧ b = c) ∨ (a = d ∧ d = c)) : (h a c) = (h c a) := or::elim H (fun H1 : _, let AeqC := trans (and::eliml H1) (and::elimr (and::elimr H1)) in congrH AeqC (symm AeqC)) (fun H1 : _, let AeqC := trans (and::eliml H1) (and::elimr H1) in congrH AeqC (symm AeqC)) setoption lean::pp::implicit false print environment 1