/- Copyright (c) 2014 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: types.equiv Author: Floris van Doorn Ported from Coq HoTT Theorems about the types equiv and is_equiv -/ import types.fiber types.arrow open eq is_trunc sigma sigma.ops arrow pi namespace is_equiv open equiv function section open fiber variables {A B : Type} (f : A → B) [H : is_equiv f] include H definition is_contr_fiber_of_is_equiv (b : B) : is_contr (fiber f b) := is_contr.mk (fiber.mk (f⁻¹ b) (retr f b)) (λz, fiber.rec_on z (λa p, fiber.eq_mk ((ap f⁻¹ p)⁻¹ ⬝ sect f a) (calc retr f b = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ ((ap (f ∘ f⁻¹) p) ⬝ retr f b) : by rewrite inv_con_cancel_left ... = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ (retr f (f a) ⬝ p) : by rewrite ap_con_eq_con ... = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ (ap f (sect f a) ⬝ p) : by rewrite adj ... = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ ap f (sect f a) ⬝ p : by rewrite con.assoc ... = (ap f (ap f⁻¹ p))⁻¹ ⬝ ap f (sect f a) ⬝ p : by rewrite ap_compose ... = ap f (ap f⁻¹ p)⁻¹ ⬝ ap f (sect f a) ⬝ p : by rewrite ap_inv ... = ap f ((ap f⁻¹ p)⁻¹ ⬝ sect f a) ⬝ p : by rewrite ap_con))) definition is_contr_right_inverse : is_contr (Σ(g : B → A), f ∘ g ∼ id) := begin fapply is_trunc_equiv_closed, {apply sigma_equiv_sigma_id, intro g, apply eq_equiv_homotopy}, fapply is_trunc_equiv_closed, {apply fiber.sigma_char}, fapply is_contr_fiber_of_is_equiv, apply (to_is_equiv (arrow_equiv_arrow_right (equiv.mk f H))), end definition is_contr_right_coherence (u : Σ(g : B → A), f ∘ g ∼ id) : is_contr (Σ(η : u.1 ∘ f ∼ id), Π(a : A), u.2 (f a) = ap f (η a)) := begin fapply is_trunc_equiv_closed, {apply equiv.symm, apply sigma_pi_equiv_pi_sigma}, fapply is_trunc_equiv_closed, {apply pi_equiv_pi_id, intro a, apply (equiv_fiber_eq (fiber.mk (u.1 (f a)) (u.2 (f a))) (fiber.mk a idp))}, fapply is_trunc_pi, intro a, fapply @is_contr_eq, apply is_contr_fiber_of_is_equiv end end variables {A B : Type} (f : A → B) protected definition sigma_char : (is_equiv f) ≃ (Σ(g : B → A) (ε : f ∘ g ∼ id) (η : g ∘ f ∼ id), Π(a : A), ε (f a) = ap f (η a)) := equiv.MK (λH, ⟨inv f, retr f, sect f, adj f⟩) (λp, is_equiv.mk p.1 p.2.1 p.2.2.1 p.2.2.2) (λp, begin cases p with (p1, p2), cases p2 with (p21, p22), cases p22 with (p221, p222), apply idp end) (λH, is_equiv.rec_on H (λH1 H2 H3 H4, idp)) protected definition sigma_char' : (is_equiv f) ≃ (Σ(u : Σ(g : B → A), f ∘ g ∼ id), Σ(η : u.1 ∘ f ∼ id), Π(a : A), u.2 (f a) = ap f (η a)) := calc (is_equiv f) ≃ (Σ(g : B → A) (ε : f ∘ g ∼ id) (η : g ∘ f ∼ id), Π(a : A), ε (f a) = ap f (η a)) : is_equiv.sigma_char ... ≃ (Σ(u : Σ(g : B → A), f ∘ g ∼ id), Σ(η : u.1 ∘ f ∼ id), Π(a : A), u.2 (f a) = ap f (η a)) : {sigma_assoc_equiv (λu, Σ(η : u.1 ∘ f ∼ id), Π(a : A), u.2 (f a) = ap f (η a))} local attribute is_contr_right_inverse [instance] local attribute is_contr_right_coherence [instance] theorem is_hprop_is_equiv [instance] : is_hprop (is_equiv f) := is_hprop_of_imp_is_contr (λ(H : is_equiv f), is_trunc_equiv_closed -2 (equiv.symm !sigma_char')) end is_equiv namespace equiv open is_equiv variables {A B : Type} protected definition eq_mk' {f f' : A → B} [H : is_equiv f] [H' : is_equiv f'] (p : f = f') : equiv.mk f H = equiv.mk f' H' := apD011 equiv.mk p !is_hprop.elim protected definition eq_mk {f f' : A ≃ B} (p : to_fun f = to_fun f') : f = f' := by (cases f; cases f'; apply (equiv.eq_mk' p)) end equiv