import logic data.nat.basic open nat inductive vector (A : Type) : nat → Type := vnil : vector A zero, vcons : Π {n : nat}, A → vector A n → vector A (succ n) namespace vector definition no_confusion_type {A : Type} {n : nat} (P : Type) (v₁ v₂ : vector A n) : Type := cases_on v₁ (cases_on v₂ (P → P) (λ n₂ h₂ t₂, P)) (λ n₁ h₁ t₁, cases_on v₂ P (λ n₂ h₂ t₂, (Π (H : n₁ = n₂), h₁ = h₂ → eq.rec_on H t₁ = t₂ → P) → P)) definition no_confusion {A : Type} {n : nat} {P : Type} {v₁ v₂ : vector A n} : v₁ = v₂ → no_confusion_type P v₁ v₂ := assume H₁₂ : v₁ = v₂, have aux : v₁ = v₁ → no_confusion_type P v₁ v₁, from take H₁₁, cases_on v₁ (assume h : P, h) (take n₁ h₁ t₁, assume h : (Π (H : n₁ = n₁), h₁ = h₁ → t₁ = t₁ → P), h rfl rfl rfl), eq.rec aux H₁₂ H₁₂ theorem vcons.inj₁ {A : Type} {n : nat} (a₁ a₂ : A) (v₁ v₂ : vector A n) : vcons a₁ v₁ = vcons a₂ v₂ → a₁ = a₂ := begin intro h, apply (no_confusion h), intros, assumption end theorem vcons.inj₂ {A : Type} {n : nat} (a₁ a₂ : A) (v₁ v₂ : vector A n) : vcons a₁ v₁ = vcons a₂ v₂ → v₁ = v₂ := begin intro h, apply (no_confusion h), intros, eassumption end end vector