/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Jeremy Avigad, Leonardo de Moura -/ import logic.connectives logic.identities algebra.binary open eq.ops binary definition set [reducible] (X : Type) := X → Prop namespace set variable {X : Type} /- membership and subset -/ definition mem [reducible] (x : X) (a : set X) := a x infix `∈` := mem notation a ∉ b := ¬ mem a b theorem ext {a b : set X} (H : ∀x, x ∈ a ↔ x ∈ b) : a = b := funext (take x, propext (H x)) definition subset (a b : set X) := ∀⦃x⦄, x ∈ a → x ∈ b infix `⊆` := subset definition superset [reducible] (s t : set X) : Prop := t ⊆ s infix `⊇` := superset theorem subset.refl (a : set X) : a ⊆ a := take x, assume H, H theorem subset.trans {a b c : set X} (subab : a ⊆ b) (subbc : b ⊆ c) : a ⊆ c := take x, assume ax, subbc (subab ax) theorem subset.antisymm {a b : set X} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b := ext (λ x, iff.intro (λ ina, h₁ ina) (λ inb, h₂ inb)) -- an alterantive name theorem eq_of_subset_of_subset {a b : set X} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b := subset.antisymm h₁ h₂ theorem mem_of_subset_of_mem {s₁ s₂ : set X} {a : X} : s₁ ⊆ s₂ → a ∈ s₁ → a ∈ s₂ := assume h₁ h₂, h₁ _ h₂ /- strict subset -/ definition strict_subset (a b : set X) := a ⊆ b ∧ a ≠ b infix `⊂`:50 := strict_subset theorem strict_subset.irrefl (a : set X) : ¬ a ⊂ a := assume h, absurd rfl (and.elim_right h) /- bounded quantification -/ abbreviation bounded_forall (a : set X) (P : X → Prop) := ∀⦃x⦄, x ∈ a → P x notation `forallb` binders `∈` a `,` r:(scoped:1 P, P) := bounded_forall a r notation `∀₀` binders `∈` a `,` r:(scoped:1 P, P) := bounded_forall a r abbreviation bounded_exists (a : set X) (P : X → Prop) := ∃⦃x⦄, x ∈ a ∧ P x notation `existsb` binders `∈` a `,` r:(scoped:1 P, P) := bounded_exists a r notation `∃₀` binders `∈` a `,` r:(scoped:1 P, P) := bounded_exists a r theorem bounded_exists.intro {P : X → Prop} {s : set X} {x : X} (xs : x ∈ s) (Px : P x) : ∃₀ x ∈ s, P x := exists.intro x (and.intro xs Px) /- empty set -/ definition empty [reducible] : set X := λx, false notation `∅` := empty theorem not_mem_empty (x : X) : ¬ (x ∈ ∅) := assume H : x ∈ ∅, H theorem mem_empty_eq (x : X) : x ∈ ∅ = false := rfl theorem eq_empty_of_forall_not_mem {s : set X} (H : ∀ x, x ∉ s) : s = ∅ := ext (take x, iff.intro (assume xs, absurd xs (H x)) (assume xe, absurd xe !not_mem_empty)) theorem empty_subset (s : set X) : ∅ ⊆ s := take x, assume H, false.elim H theorem eq_empty_of_subset_empty {s : set X} (H : s ⊆ ∅) : s = ∅ := subset.antisymm H (empty_subset s) theorem subset_empty_iff (s : set X) : s ⊆ ∅ ↔ s = ∅ := iff.intro eq_empty_of_subset_empty (take xeq, by rewrite xeq; apply subset.refl ∅) /- universal set -/ definition univ : set X := λx, true theorem mem_univ (x : X) : x ∈ univ := trivial theorem mem_univ_iff (x : X) : x ∈ univ ↔ true := !iff.refl theorem mem_univ_eq (x : X) : x ∈ univ = true := rfl theorem empty_ne_univ [h : inhabited X] : (empty : set X) ≠ univ := assume H : empty = univ, absurd (mem_univ (inhabited.value h)) (eq.rec_on H (not_mem_empty _)) theorem subset_univ (s : set X) : s ⊆ univ := λ x H, trivial theorem eq_univ_of_univ_subset {s : set X} (H : univ ⊆ s) : s = univ := eq_of_subset_of_subset (subset_univ s) H theorem eq_univ_of_forall {s : set X} (H : ∀ x, x ∈ s) : s = univ := ext (take x, iff.intro (assume H', trivial) (assume H', H x)) /- union -/ definition union [reducible] (a b : set X) : set X := λx, x ∈ a ∨ x ∈ b notation a ∪ b := union a b theorem mem_union_left {x : X} {a : set X} (b : set X) : x ∈ a → x ∈ a ∪ b := assume h, or.inl h theorem mem_union_right {x : X} {b : set X} (a : set X) : x ∈ b → x ∈ a ∪ b := assume h, or.inr h theorem mem_unionl {x : X} {a b : set X} : x ∈ a → x ∈ a ∪ b := assume h, or.inl h theorem mem_unionr {x : X} {a b : set X} : x ∈ b → x ∈ a ∪ b := assume h, or.inr h theorem mem_or_mem_of_mem_union {x : X} {a b : set X} (H : x ∈ a ∪ b) : x ∈ a ∨ x ∈ b := H theorem mem_union.elim {x : X} {a b : set X} {P : Prop} (H₁ : x ∈ a ∪ b) (H₂ : x ∈ a → P) (H₃ : x ∈ b → P) : P := or.elim H₁ H₂ H₃ theorem mem_union_iff (x : X) (a b : set X) : x ∈ a ∪ b ↔ x ∈ a ∨ x ∈ b := !iff.refl theorem mem_union_eq (x : X) (a b : set X) : x ∈ a ∪ b = (x ∈ a ∨ x ∈ b) := rfl theorem union_self (a : set X) : a ∪ a = a := ext (take x, !or_self) theorem union_empty (a : set X) : a ∪ ∅ = a := ext (take x, !or_false) theorem empty_union (a : set X) : ∅ ∪ a = a := ext (take x, !false_or) theorem union.comm (a b : set X) : a ∪ b = b ∪ a := ext (take x, or.comm) theorem union.assoc (a b c : set X) : (a ∪ b) ∪ c = a ∪ (b ∪ c) := ext (take x, or.assoc) theorem union.left_comm (s₁ s₂ s₃ : set X) : s₁ ∪ (s₂ ∪ s₃) = s₂ ∪ (s₁ ∪ s₃) := !left_comm union.comm union.assoc s₁ s₂ s₃ theorem union.right_comm (s₁ s₂ s₃ : set X) : (s₁ ∪ s₂) ∪ s₃ = (s₁ ∪ s₃) ∪ s₂ := !right_comm union.comm union.assoc s₁ s₂ s₃ theorem subset_union_left (s t : set X) : s ⊆ s ∪ t := λ x H, or.inl H theorem subset_union_right (s t : set X) : t ⊆ s ∪ t := λ x H, or.inr H theorem union_subset {s t r : set X} (sr : s ⊆ r) (tr : t ⊆ r) : s ∪ t ⊆ r := λ x xst, or.elim xst (λ xs, sr xs) (λ xt, tr xt) /- intersection -/ definition inter [reducible] (a b : set X) : set X := λx, x ∈ a ∧ x ∈ b notation a ∩ b := inter a b theorem mem_inter_iff (x : X) (a b : set X) : x ∈ a ∩ b ↔ x ∈ a ∧ x ∈ b := !iff.refl theorem mem_inter_eq (x : X) (a b : set X) : x ∈ a ∩ b = (x ∈ a ∧ x ∈ b) := rfl theorem mem_inter {x : X} {a b : set X} (Ha : x ∈ a) (Hb : x ∈ b) : x ∈ a ∩ b := and.intro Ha Hb theorem mem_of_mem_inter_left {x : X} {a b : set X} (H : x ∈ a ∩ b) : x ∈ a := and.left H theorem mem_of_mem_inter_right {x : X} {a b : set X} (H : x ∈ a ∩ b) : x ∈ b := and.right H theorem inter_self (a : set X) : a ∩ a = a := ext (take x, !and_self) theorem inter_empty (a : set X) : a ∩ ∅ = ∅ := ext (take x, !and_false) theorem empty_inter (a : set X) : ∅ ∩ a = ∅ := ext (take x, !false_and) theorem inter.comm (a b : set X) : a ∩ b = b ∩ a := ext (take x, !and.comm) theorem inter.assoc (a b c : set X) : (a ∩ b) ∩ c = a ∩ (b ∩ c) := ext (take x, !and.assoc) theorem inter.left_comm (s₁ s₂ s₃ : set X) : s₁ ∩ (s₂ ∩ s₃) = s₂ ∩ (s₁ ∩ s₃) := !left_comm inter.comm inter.assoc s₁ s₂ s₃ theorem inter.right_comm (s₁ s₂ s₃ : set X) : (s₁ ∩ s₂) ∩ s₃ = (s₁ ∩ s₃) ∩ s₂ := !right_comm inter.comm inter.assoc s₁ s₂ s₃ theorem inter_univ (a : set X) : a ∩ univ = a := ext (take x, !and_true) theorem univ_inter (a : set X) : univ ∩ a = a := ext (take x, !true_and) theorem inter_subset_left (s t : set X) : s ∩ t ⊆ s := λ x H, and.left H theorem inter_subset_right (s t : set X) : s ∩ t ⊆ t := λ x H, and.right H theorem subset_inter {s t r : set X} (rs : r ⊆ s) (rt : r ⊆ t) : r ⊆ s ∩ t := λ x xr, and.intro (rs xr) (rt xr) /- distributivity laws -/ theorem inter.distrib_left (s t u : set X) : s ∩ (t ∪ u) = (s ∩ t) ∪ (s ∩ u) := ext (take x, !and.left_distrib) theorem inter.distrib_right (s t u : set X) : (s ∪ t) ∩ u = (s ∩ u) ∪ (t ∩ u) := ext (take x, !and.right_distrib) theorem union.distrib_left (s t u : set X) : s ∪ (t ∩ u) = (s ∪ t) ∩ (s ∪ u) := ext (take x, !or.left_distrib) theorem union.distrib_right (s t u : set X) : (s ∩ t) ∪ u = (s ∪ u) ∩ (t ∪ u) := ext (take x, !or.right_distrib) /- set-builder notation -/ -- {x : X | P} definition set_of [reducible] (P : X → Prop) : set X := P notation `{` binder `|` r:(scoped:1 P, set_of P) `}` := r -- {x ∈ s | P} definition sep (P : X → Prop) (s : set X) : set X := λx, x ∈ s ∧ P x notation `{` binder ∈ s `|` r:(scoped:1 p, sep p s) `}` := r /- insert -/ definition insert (x : X) (a : set X) : set X := {y : X | y = x ∨ y ∈ a} -- '{x, y, z} notation `'{`:max a:(foldr `,` (x b, insert x b) ∅) `}`:0 := a theorem subset_insert (x : X) (a : set X) : a ⊆ insert x a := take y, assume ys, or.inr ys theorem mem_insert (x : X) (s : set X) : x ∈ insert x s := or.inl rfl theorem mem_insert_of_mem {x : X} {s : set X} (y : X) : x ∈ s → x ∈ insert y s := assume h, or.inr h theorem eq_or_mem_of_mem_insert {x a : X} {s : set X} : x ∈ insert a s → x = a ∨ x ∈ s := assume h, h theorem mem_of_mem_insert_of_ne {x a : X} {s : set X} (xin : x ∈ insert a s) : x ≠ a → x ∈ s := or_resolve_right (eq_or_mem_of_mem_insert xin) theorem mem_insert_eq (x a : X) (s : set X) : x ∈ insert a s = (x = a ∨ x ∈ s) := propext (iff.intro !eq_or_mem_of_mem_insert (or.rec (λH', (eq.substr H' !mem_insert)) !mem_insert_of_mem)) theorem insert_eq_of_mem {a : X} {s : set X} (H : a ∈ s) : insert a s = s := ext (λ x, eq.substr (mem_insert_eq x a s) (or_iff_right_of_imp (λH1, eq.substr H1 H))) theorem insert.comm (x y : X) (s : set X) : insert x (insert y s) = insert y (insert x s) := ext (take a, by rewrite [*mem_insert_eq, propext !or.left_comm]) /- singleton -/ theorem mem_singleton_iff (a b : X) : a ∈ '{b} ↔ a = b := iff.intro (assume ainb, or.elim ainb (λ aeqb, aeqb) (λ f, false.elim f)) (assume aeqb, or.inl aeqb) theorem mem_singleton (a : X) : a ∈ '{a} := !mem_insert theorem eq_of_mem_singleton {x y : X} : x ∈ insert y ∅ → x = y := assume h, or.elim (eq_or_mem_of_mem_insert h) (suppose x = y, this) (suppose x ∈ ∅, absurd this !not_mem_empty) /- separation -/ theorem mem_sep {s : set X} {P : X → Prop} {x : X} (xs : x ∈ s) (Px : P x) : x ∈ {x ∈ s | P x} := and.intro xs Px theorem eq_sep_of_subset {s t : set X} (ssubt : s ⊆ t) : s = {x ∈ t | x ∈ s} := ext (take x, iff.intro (suppose x ∈ s, and.intro (ssubt this) this) (suppose x ∈ {x ∈ t | x ∈ s}, and.right this)) theorem mem_sep_iff {s : set X} {P : X → Prop} {x : X} : x ∈ {x ∈ s | P x} ↔ x ∈ s ∧ P x := !iff.refl /- complement -/ definition complement (s : set X) : set X := {x | x ∉ s} prefix `-` := complement theorem mem_comp {s : set X} {x : X} (H : x ∉ s) : x ∈ -s := H theorem not_mem_of_mem_comp {s : set X} {x : X} (H : x ∈ -s) : x ∉ s := H theorem mem_comp_iff {s : set X} {x : X} : x ∈ -s ↔ x ∉ s := !iff.refl section open classical theorem union_eq_comp_comp_inter_comp (s t : set X) : s ∪ t = -(-s ∩ -t) := ext (take x, !or_iff_not_and_not) theorem inter_eq_comp_comp_union_comp (s t : set X) : s ∩ t = -(-s ∪ -t) := ext (take x, !and_iff_not_or_not) end /- set difference -/ definition diff (s t : set X) : set X := {x ∈ s | x ∉ t} infix `\`:70 := diff theorem mem_diff {s t : set X} {x : X} (H1 : x ∈ s) (H2 : x ∉ t) : x ∈ s \ t := and.intro H1 H2 theorem mem_of_mem_diff {s t : set X} {x : X} (H : x ∈ s \ t) : x ∈ s := and.left H theorem not_mem_of_mem_diff {s t : set X} {x : X} (H : x ∈ s \ t) : x ∉ t := and.right H theorem mem_diff_iff (s t : set X) (x : X) : x ∈ s \ t ↔ x ∈ s ∧ x ∉ t := !iff.refl theorem mem_diff_eq (s t : set X) (x : X) : x ∈ s \ t = (x ∈ s ∧ x ∉ t) := rfl theorem diff_eq (s t : set X) : s \ t = s ∩ -t := rfl theorem union_diff_cancel {s t : set X} [dec : Π x, decidable (x ∈ s)] (H : s ⊆ t) : s ∪ (t \ s) = t := ext (take x, iff.intro (assume H1 : x ∈ s ∪ (t \ s), or.elim H1 (assume H2, !H H2) (assume H2, and.left H2)) (assume H1 : x ∈ t, decidable.by_cases (suppose x ∈ s, or.inl this) (suppose x ∉ s, or.inr (and.intro H1 this)))) /- powerset -/ definition powerset (s : set X) : set (set X) := {x : set X | x ⊆ s} prefix `𝒫`:100 := powerset theorem mem_powerset {x s : set X} (H : x ⊆ s) : x ∈ 𝒫 s := H theorem subset_of_mem_powerset {x s : set X} (H : x ∈ 𝒫 s) : x ⊆ s := H theorem mem_powerset_iff (x s : set X) : x ∈ 𝒫 s ↔ x ⊆ s := !iff.refl /- large unions -/ section variables {I : Type} variable a : set I variable b : I → set X variable C : set (set X) definition Inter : set X := {x : X | ∀i, x ∈ b i} definition bInter : set X := {x : X | ∀₀ i ∈ a, x ∈ b i} definition sInter : set X := {x : X | ∀₀ c ∈ C, x ∈ c} definition Union : set X := {x : X | ∃i, x ∈ b i} definition bUnion : set X := {x : X | ∃₀ i ∈ a, x ∈ b i} definition sUnion : set X := {x : X | ∃₀ c ∈ C, x ∈ c} -- TODO: need notation for these end end set