import data.vector open nat vector check lt.base set_option pp.implicit true definition add : nat → nat → nat, add zero b := b, add (succ a) b := succ (add a b) definition map {A B C : Type} (f : A → B → C) : Π {n}, vector A n → vector B n → vector C n, map nil nil := nil, map (a :: va) (b :: vb) := f a b :: map va vb definition fib : nat → nat, fib 0 := 1, fib 1 := 1, fib (a+2) := (fib a ↓ lt.step (lt.base a)) + (fib (a+1) ↓ lt.base (a+1)) [wf] lt.wf definition half : nat → nat, half 0 := 0, half 1 := 0, half (x+2) := half x + 1 variables {A B : Type} inductive image_of (f : A → B) : B → Type := mk : Π a, image_of f (f a) definition inv {f : A → B} : Π b, image_of f b → A, inv ⌞f a⌟ (image_of.mk f a) := a