/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: hit.circle Authors: Floris van Doorn Declaration of the circle -/ import .sphere types.bool types.eq types.int.hott types.arrow types.equiv open eq suspension bool sphere_index is_equiv equiv equiv.ops is_trunc definition circle [reducible] := sphere 1 namespace circle definition base1 : circle := !north definition base2 : circle := !south definition seg1 : base1 = base2 := merid !north definition seg2 : base1 = base2 := merid !south definition base : circle := base1 definition loop : base = base := seg1 ⬝ seg2⁻¹ definition rec2 {P : circle → Type} (Pb1 : P base1) (Pb2 : P base2) (Ps1 : seg1 ▸ Pb1 = Pb2) (Ps2 : seg2 ▸ Pb1 = Pb2) (x : circle) : P x := begin fapply (suspension.rec_on x), { exact Pb1}, { exact Pb2}, { esimp, intro b, fapply (suspension.rec_on b), { exact Ps1}, { exact Ps2}, { intro x, cases x}}, end definition rec2_on [reducible] {P : circle → Type} (x : circle) (Pb1 : P base1) (Pb2 : P base2) (Ps1 : seg1 ▸ Pb1 = Pb2) (Ps2 : seg2 ▸ Pb1 = Pb2) : P x := circle.rec2 Pb1 Pb2 Ps1 Ps2 x theorem rec2_seg1 {P : circle → Type} (Pb1 : P base1) (Pb2 : P base2) (Ps1 : seg1 ▸ Pb1 = Pb2) (Ps2 : seg2 ▸ Pb1 = Pb2) : apd (rec2 Pb1 Pb2 Ps1 Ps2) seg1 = Ps1 := !rec_merid theorem rec2_seg2 {P : circle → Type} (Pb1 : P base1) (Pb2 : P base2) (Ps1 : seg1 ▸ Pb1 = Pb2) (Ps2 : seg2 ▸ Pb1 = Pb2) : apd (rec2 Pb1 Pb2 Ps1 Ps2) seg2 = Ps2 := !rec_merid definition elim2 {P : Type} (Pb1 Pb2 : P) (Ps1 : Pb1 = Pb2) (Ps2 : Pb1 = Pb2) (x : circle) : P := rec2 Pb1 Pb2 (!tr_constant ⬝ Ps1) (!tr_constant ⬝ Ps2) x definition elim2_on [reducible] {P : Type} (x : circle) (Pb1 Pb2 : P) (Ps1 : Pb1 = Pb2) (Ps2 : Pb1 = Pb2) : P := elim2 Pb1 Pb2 Ps1 Ps2 x theorem elim2_seg1 {P : Type} (Pb1 Pb2 : P) (Ps1 : Pb1 = Pb2) (Ps2 : Pb1 = Pb2) : ap (elim2 Pb1 Pb2 Ps1 Ps2) seg1 = Ps1 := begin apply (@cancel_left _ _ _ _ (tr_constant seg1 (elim2 Pb1 Pb2 Ps1 Ps2 base1))), rewrite [-apd_eq_tr_constant_con_ap,↑elim2,rec2_seg1], end theorem elim2_seg2 {P : Type} (Pb1 Pb2 : P) (Ps1 : Pb1 = Pb2) (Ps2 : Pb1 = Pb2) : ap (elim2 Pb1 Pb2 Ps1 Ps2) seg2 = Ps2 := begin apply (@cancel_left _ _ _ _ (tr_constant seg2 (elim2 Pb1 Pb2 Ps1 Ps2 base1))), rewrite [-apd_eq_tr_constant_con_ap,↑elim2,rec2_seg2], end protected definition rec {P : circle → Type} (Pbase : P base) (Ploop : loop ▸ Pbase = Pbase) (x : circle) : P x := begin fapply (rec2_on x), { exact Pbase}, { exact (transport P seg1 Pbase)}, { apply idp}, { apply tr_eq_of_eq_inv_tr, exact (Ploop⁻¹ ⬝ !con_tr)}, end --rewrite -tr_con, exact Ploop⁻¹ protected definition rec_on [reducible] {P : circle → Type} (x : circle) (Pbase : P base) (Ploop : loop ▸ Pbase = Pbase) : P x := rec Pbase Ploop x theorem rec_loop_helper {A : Type} (P : A → Type) {x y : A} {p : x = y} {u : P x} {v : P y} (q : u = p⁻¹ ▸ v) : eq_inv_tr_of_tr_eq (tr_eq_of_eq_inv_tr q) = q := by cases p; exact idp definition con_refl {A : Type} {x y : A} (p : x = y) : p ⬝ refl _ = p := eq.rec_on p idp theorem rec_loop {P : circle → Type} (Pbase : P base) (Ploop : loop ▸ Pbase = Pbase) : apd (rec Pbase Ploop) loop = Ploop := begin rewrite [↑loop,apd_con,↑rec,↑rec2_on,↑base,rec2_seg1,apd_inv,rec2_seg2,↑ap], --con_idp should work here apply concat, apply (ap (λx, x ⬝ _)), apply con_idp, esimp, rewrite [rec_loop_helper,inv_con_inv_left], apply con_inv_cancel_left end protected definition elim {P : Type} (Pbase : P) (Ploop : Pbase = Pbase) (x : circle) : P := rec Pbase (tr_constant loop Pbase ⬝ Ploop) x protected definition elim_on [reducible] {P : Type} (x : circle) (Pbase : P) (Ploop : Pbase = Pbase) : P := elim Pbase Ploop x theorem elim_loop {P : Type} (Pbase : P) (Ploop : Pbase = Pbase) : ap (elim Pbase Ploop) loop = Ploop := begin apply (@cancel_left _ _ _ _ (tr_constant loop (elim Pbase Ploop base))), rewrite [-apd_eq_tr_constant_con_ap,↑elim,rec_loop], end protected definition elim_type (Pbase : Type) (Ploop : Pbase ≃ Pbase) (x : circle) : Type := elim Pbase (ua Ploop) x protected definition elim_type_on [reducible] (x : circle) (Pbase : Type) (Ploop : Pbase ≃ Pbase) : Type := elim_type Pbase Ploop x theorem elim_type_loop (Pbase : Type) (Ploop : Pbase ≃ Pbase) : transport (elim_type Pbase Ploop) loop = Ploop := by rewrite [tr_eq_cast_ap_fn,↑elim_type,elim_loop];apply cast_ua_fn theorem elim_type_loop_inv (Pbase : Type) (Ploop : Pbase ≃ Pbase) : transport (elim_type Pbase Ploop) loop⁻¹ = to_inv Ploop := by rewrite [tr_inv_fn,↑to_inv]; apply inv_eq_inv; apply elim_type_loop definition loop_neq_idp : loop ≠ idp := assume H : loop = idp, have H2 : Π{A : Type₁} {a : A} (p : a = a), p = idp, from λA a p, calc p = ap (circle.elim a p) loop : elim_loop ... = ap (circle.elim a p) (refl base) : by rewrite H, absurd !H2 eq_bnot_ne_idp definition nonidp (x : circle) : x = x := circle.rec_on x loop (calc loop ▸ loop = loop⁻¹ ⬝ loop ⬝ loop : transport_eq_lr ... = loop : by rewrite [con.left_inv, idp_con]) definition nonidp_neq_idp : nonidp ≠ (λx, idp) := assume H : nonidp = λx, idp, have H2 : loop = idp, from apd10 H base, absurd H2 loop_neq_idp open int protected definition code (x : circle) : Type₀ := circle.elim_type_on x ℤ equiv_succ definition transport_code_loop (a : ℤ) : transport code loop a = succ a := ap10 !elim_type_loop a definition transport_code_loop_inv (a : ℤ) : transport code loop⁻¹ a = pred a := ap10 !elim_type_loop_inv a protected definition encode {x : circle} (p : base = x) : code x := transport code p (of_num 0) -- why is the explicit coercion needed here? --attribute type_quotient.rec_on [unfold-c 4] definition circle_eq_equiv (x : circle) : (base = x) ≃ code x := begin fapply equiv.MK, { exact encode}, { refine circle.rec_on x _ _, { exact power loop}, { apply eq_of_homotopy, intro a, refine !arrow.arrow_transport ⬝ !transport_eq_r ⬝ _, rewrite [transport_code_loop_inv,power_con,succ_pred]}}, { refine circle.rec_on x _ _, { intro a, esimp [circle.rec_on, circle.rec, base, rec2_on, rec2, base1, suspension.rec_on, suspension.rec, north, pushout.rec_on, pushout.rec, pushout.inl, type_quotient.rec_on], --simplify after #587 apply rec_nat_on a, { exact idp}, { intros n p, apply transport (λ(y : base = base), transport code y _ = _), apply power_con, rewrite [▸*,con_tr, transport_code_loop, ↑[encode,code] at p, p]}, { intros n p, apply transport (λ(y : base = base), transport code y _ = _), { exact !power_con_inv ⬝ ap (power loop) !neg_succ⁻¹}, rewrite [▸*,con_tr,transport_code_loop_inv, ↑[encode,code] at p, p, -neg_succ]}}, { apply eq_of_homotopy, intro a, apply @is_hset.elim, change is_hset ℤ, exact _}}, --simplify after #587 { intro p, cases p, exact idp}, end definition base_eq_base_equiv : (base = base) ≃ ℤ := circle_eq_equiv base end circle