import data.unit open nat unit constant f {A : Type} (a : A) {B : Type} (b : B) : nat constant g : unit → nat example (a b : unit) : g a = g b := by simp example (a c : unit) (b d : nat) : b = d → f a b = f c d := by simp constant h {A B : Type} : A → B → nat example (a b c d : unit) : h a b = h c d := by simp definition C [reducible] : nat → Type₁ | nat.zero := unit | (nat.succ a) := nat constant g₂ : Π {n : nat}, C n → nat → nat example (a b : C zero) (c d : nat) : c = d → g₂ a c = g₂ b d := by simp example (n : nat) (h : zero = n) (a b : C n) (c d : nat) : c = d → g₂ a c = g₂ b d := by simp -- The following one cannot be solved as is -- example (a c : nat) (b d : unit) : a = c → b = d → f a b = f c d := -- by simp -- But, we can use the following trick definition f_aux {A B : Type} (a : A) (b : B) := f a b lemma to_f_aux [simp] {A B : Type} (a : A) (b : B) : f a b = f_aux a b := rfl example (a c : nat) (b d : unit) : a = c → b = d → f a b = f c d := by simp